Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
predihood
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Duchateau Fabien
predihood
Commits
9bde30f6
Commit
9bde30f6
authored
5 years ago
by
Nelly Barret
Browse files
Options
Downloads
Patches
Plain Diff
[M] working on similarity between curves
parent
71599410
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
predihood/charts.py
+2
-4
2 additions, 4 deletions
predihood/charts.py
predihood/classes/Chart.py
+78
-7
78 additions, 7 deletions
predihood/classes/Chart.py
with
80 additions
and
11 deletions
predihood/charts.py
+
2
−
4
View file @
9bde30f6
...
@@ -8,12 +8,10 @@ def generate_charts():
...
@@ -8,12 +8,10 @@ def generate_charts():
data
=
Data
(
normalize
=
"
density
"
,
filter
=
True
)
data
=
Data
(
normalize
=
"
density
"
,
filter
=
True
)
data
.
init_all_in_one
()
data
.
init_all_in_one
()
lists
=
get_selected_indicators_lists
(
10
)
lists
=
get_selected_indicators_lists
(
10
)
print
(
lists
)
for
j
,
env
in
enumerate
([
"
batiment
"
]):
for
j
,
env
in
enumerate
([
"
batiment
"
,
"
usage
"
]):
print
(
env
)
dataset
=
Dataset
(
data
,
env
,
selected_indicators
=
lists
[
"
10
"
][
env
],
train_size
=
0.8
,
test_size
=
0.2
)
dataset
=
Dataset
(
data
,
env
,
selected_indicators
=
lists
[
"
10
"
][
env
],
train_size
=
0.8
,
test_size
=
0.2
)
dataset
.
init_all_in_one
()
dataset
.
init_all_in_one
()
algo
=
Chart
(
name
=
'
chart
'
,
dataset
=
dataset
)
algo
=
Chart
(
name
=
'
chart
'
,
dataset
=
dataset
,
number_of_iris
=
4
)
algo
.
compute_trendline
()
algo
.
compute_trendline
()
...
...
This diff is collapsed.
Click to expand it.
predihood/classes/Chart.py
+
78
−
7
View file @
9bde30f6
...
@@ -6,37 +6,108 @@ from scipy.interpolate import interp1d
...
@@ -6,37 +6,108 @@ from scipy.interpolate import interp1d
from
predihood.classes.Method
import
Method
from
predihood.classes.Method
import
Method
def
point_distance
(
y1
,
y2
):
return
abs
(
float
(
y2
)
-
float
(
y1
))
def
similarity_point
(
y1
,
y2
,
step
):
distance
=
point_distance
(
y1
,
y2
)
if
distance
==
0
:
return
1
# points are the same
elif
distance
/
(
2
*
step
)
>
1
:
return
0
# points are too different
else
:
return
distance
/
(
2
*
step
)
def
slope
(
x1
,
y1
,
x2
,
y2
):
if
y1
==
0
and
y2
==
0
:
return
0
leading_coeff
=
(
y2
-
y1
)
/
(
x2
-
x1
)
# coefficient directeur
# print(leading_coeff)
teta
=
np
.
degrees
(
np
.
arctan
(
leading_coeff
))
# incline of the line between the two points
if
x1
<
x2
and
y1
>
y2
:
teta
+=
360
return
teta
def
similarity
(
data1
,
data2
,
max_distance
,
nb_points
):
somme
=
0
for
point1
,
point2
in
zip
(
data1
,
data2
):
x1
,
y1
,
x2
,
y2
=
point1
[
0
],
point1
[
1
],
point2
[
0
],
point2
[
1
]
similarity
=
point_distance
(
y1
,
y2
)
/
max_distance
if
x1
+
1
<
len
(
data1
)
and
x2
+
1
<
len
(
data2
):
next_x1
=
data1
[
x1
+
1
][
0
]
next_y1
=
data1
[
x1
+
1
][
1
]
next_x2
=
data2
[
x2
+
1
][
0
]
next_y2
=
data2
[
x2
+
1
][
1
]
print
(
"
next is (
"
,
next_x1
,
"
;
"
,
next_y1
,
"
), (
"
,
next_x2
,
"
;
"
,
next_y2
,
"
)
"
)
sinus1
=
np
.
sin
(
slope
(
x1
,
y1
,
next_x1
,
next_y1
))
sinus2
=
np
.
sin
(
slope
(
x2
,
y2
,
next_x2
,
next_y2
))
slope_factor
=
abs
(
sinus1
-
sinus2
)
print
(
sinus1
,
"
-
"
,
sinus2
,
"
=
"
,
slope_factor
)
else
:
slope_factor
=
0
similarity
-=
slope_factor
somme
+=
similarity
somme
/=
nb_points
return
somme
class
Chart
(
Method
):
class
Chart
(
Method
):
def
__init__
(
self
,
name
,
dataset
):
def
__init__
(
self
,
name
,
dataset
,
number_of_iris
=
12
):
Method
.
__init__
(
self
,
name
,
dataset
)
Method
.
__init__
(
self
,
name
,
dataset
)
self
.
chart
=
None
self
.
chart
=
None
self
.
dataset
=
dataset
self
.
dataset
=
dataset
self
.
trendline
=
None
self
.
trendline
=
None
self
.
number_of_iris
=
number_of_iris
if
number_of_iris
%
2
==
0
else
12
self
.
iris_per_line
=
2
self
.
step
=
0
def
compute_trendline
(
self
):
# TODO: check order of selected indicators
def
compute_trendline
(
self
):
# TODO: check order of selected indicators
print
(
"
compute trendline
"
)
print
(
"
compute trendline
"
)
# for indicator in self.dataset.selected_indicators:
# for indicator in self.dataset.selected_indicators:
fig
,
axs
=
plt
.
subplots
(
6
,
2
,
figsize
=
(
15
,
15
))
# rows, columns
fig
,
axs
=
plt
.
subplots
(
int
(
self
.
number_of_iris
/
2
),
self
.
iris_per_line
,
figsize
=
(
15
,
15
))
# rows, columns
i
,
j
,
k
=
0
,
0
,
1
# i and j are indices to plot sub-figures and k is the counter to place figures
i
,
j
,
k
=
0
,
0
,
1
# i and j are indices to plot sub-figures and k is the counter to place figures
for
index
,
row
in
self
.
dataset
.
data
.
head
(
12
).
iterrows
():
for
index
,
row
in
self
.
dataset
.
data
.
head
(
self
.
number_of_iris
).
iterrows
():
data
=
[]
data
=
[]
for
indicator
in
self
.
dataset
.
selected_indicators
:
for
indicator
in
self
.
dataset
.
selected_indicators
:
data
.
append
(
row
[
indicator
])
data
.
append
(
row
[
indicator
])
max_value
=
self
.
dataset
.
data
.
head
(
12
)[
self
.
dataset
.
selected_indicators
].
values
.
max
()
max_value
=
self
.
dataset
.
data
.
head
(
self
.
number_of_iris
)[
self
.
dataset
.
selected_indicators
].
values
.
max
()
x
=
np
.
arange
(
0
,
len
(
data
))
x
=
np
.
arange
(
0
,
len
(
data
))
y
=
data
y
=
data
f
=
interp1d
(
x
,
y
)
f
=
interp1d
(
x
,
y
)
axs
[
i
,
j
].
axis
(
ymin
=
0
,
ymax
=
max_value
)
axs
[
i
,
j
].
axis
(
ymin
=
0
,
ymax
=
max_value
)
axs
[
i
,
j
].
set_xticks
(
np
.
arange
(
0
,
len
(
data
)))
axs
[
i
,
j
].
set_xticks
(
np
.
arange
(
0
,
len
(
data
)))
axs
[
i
,
j
].
set_xticks
(
np
.
arange
(
0
,
max_value
,
step
=
max_value
/
5
))
self
.
step
=
max_value
/
5
axs
[
i
,
j
].
set_xticks
(
np
.
arange
(
0
,
max_value
,
step
=
self
.
step
))
axs
[
i
,
j
].
plot
(
x
,
data
,
'
o
'
,
x
,
f
(
x
),
'
-
'
)
axs
[
i
,
j
].
plot
(
x
,
data
,
'
o
'
,
x
,
f
(
x
),
'
-
'
)
title
=
str
(
row
[
'
CODE
'
])
+
"
-
"
+
str
(
self
.
dataset
.
env
)
title
=
str
(
row
[
'
CODE
'
])
+
"
-
"
+
str
(
self
.
dataset
.
env
)
axs
[
i
,
j
].
set_title
(
title
)
axs
[
i
,
j
].
set_title
(
title
)
if
k
<
2
:
if
k
<
self
.
iris_per_line
:
k
+=
1
k
+=
1
j
+=
1
j
+=
1
else
:
else
:
k
=
1
k
=
1
i
+=
1
i
+=
1
j
=
0
j
=
0
fig
.
show
()
fig
.
show
()
\ No newline at end of file
self
.
compute_similarity
()
def
compute_similarity
(
self
):
for
index1
,
row1
in
self
.
dataset
.
data
.
head
(
self
.
number_of_iris
).
iterrows
():
data1
=
[]
data2
=
[]
for
index2
,
row2
in
self
.
dataset
.
data
.
head
(
self
.
number_of_iris
).
iterrows
():
if
index1
>
index2
:
# compare charts only once (don't compare 2 and 1 and after 1 and 2)
for
i
in
range
(
len
(
self
.
dataset
.
selected_indicators
)):
indicator
=
self
.
dataset
.
selected_indicators
[
i
]
data1
.
append
((
i
,
row1
[
indicator
]))
data2
.
append
((
i
,
row2
[
indicator
]))
sim_percentage
=
similarity
(
data1
,
data2
,
self
.
step
,
len
(
self
.
dataset
.
selected_indicators
))
print
(
row1
[
'
CODE
'
],
"
/
"
,
row2
[
'
CODE
'
],
"
->
"
,
sim_percentage
)
print
(
data1
)
print
(
data2
)
if
__name__
==
'
__main__
'
:
print
(
slope
(
0
,
1
,
1
,
0
))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment