Skip to content
Snippets Groups Projects
Commit 813940ae authored by jwangzzz's avatar jwangzzz
Browse files

make eval_linemod easier to understand

parent 42a21e76
No related branches found
No related tags found
No related merge requests found
......@@ -4,6 +4,7 @@ import os
import random
import numpy as np
import yaml
import copy
import torch
import torch.nn as nn
import torch.nn.parallel
......@@ -18,6 +19,8 @@ from datasets.linemod.dataset import PoseDataset as PoseDataset_linemod
from lib.network import PoseNet, PoseRefineNet
from lib.loss import Loss
from lib.loss_refiner import Loss_refine
from lib.transformations import euler_matrix, quaternion_matrix, quaternion_from_matrix
from lib.knn.__init__ import KNearestNeighbor
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', type=str, default = '', help='dataset root dir')
......@@ -29,9 +32,10 @@ num_objects = 13
objlist = [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]
num_points = 500
iteration = 2
bs = 1
dataset_config_dir = 'datasets/linemod/dataset_config'
output_result_dir = 'experiments/eval_result/linemod'
knn = KNearestNeighbor(1)
estimator = PoseNet(num_points = num_points, num_obj = num_objects)
estimator.cuda()
......@@ -73,19 +77,65 @@ for i, data in enumerate(testdataloader, 0):
Variable(target).cuda(), \
Variable(model_points).cuda(), \
Variable(idx).cuda()
pred_r, pred_t, pred_c, emb = estimator(img, points, choose, idx)
_, dis, new_points, new_target = criterion(pred_r, pred_t, pred_c, target, model_points, idx, points, 0.0, False)
pred_r = pred_r / torch.norm(pred_r, dim=2).view(1, num_points, 1)
pred_c = pred_c.view(bs, num_points)
how_max, which_max = torch.max(pred_c, 1)
pred_t = pred_t.view(bs * num_points, 1, 3)
my_r = pred_r[0][which_max[0]].view(-1).cpu().data.numpy()
my_t = (points.view(bs * num_points, 1, 3) + pred_t)[which_max[0]].view(-1).cpu().data.numpy()
my_pred = np.append(my_r, my_t)
for ite in range(0, iteration):
T = Variable(torch.from_numpy(my_t.astype(np.float32))).cuda().view(1, 3).repeat(num_points, 1).contiguous().view(1, num_points, 3)
my_mat = quaternion_matrix(my_r)
R = Variable(torch.from_numpy(my_mat[:3, :3].astype(np.float32))).cuda().view(1, 3, 3)
my_mat[0:3, 3] = my_t
new_points = torch.bmm((points - T), R).contiguous()
pred_r, pred_t = refiner(new_points, emb, idx)
dis, new_points, new_target = criterion_refine(pred_r, pred_t, new_target, model_points, idx, new_points)
pred_r = pred_r.view(1, 1, -1)
pred_r = pred_r / (torch.norm(pred_r, dim=2).view(1, 1, 1))
my_r_2 = pred_r.view(-1).cpu().data.numpy()
my_t_2 = pred_t.view(-1).cpu().data.numpy()
my_mat_2 = quaternion_matrix(my_r_2)
my_mat_2[0:3, 3] = my_t_2
my_mat_final = np.dot(my_mat, my_mat_2)
my_r_final = copy.deepcopy(my_mat_final)
my_r_final[0:3, 3] = 0
my_r_final = quaternion_from_matrix(my_r_final, True)
my_t_final = np.array([my_mat_final[0][3], my_mat_final[1][3], my_mat_final[2][3]])
my_pred = np.append(my_r_final, my_t_final)
my_r = my_r_final
my_t = my_t_final
# Here 'my_pred' is the final pose estimation result after refinement ('my_r': quaternion, 'my_t': translation)
model_points = model_points[0].cpu().detach().numpy()
my_r = quaternion_matrix(my_r)[:3, :3]
pred = np.dot(model_points, my_r.T) + my_t
target = target[0].cpu().detach().numpy()
if idx[0].item() in sym_list:
pred = torch.from_numpy(pred.astype(np.float32)).cuda().transpose(1, 0).contiguous()
target = torch.from_numpy(target.astype(np.float32)).cuda().transpose(1, 0).contiguous()
inds = knn(target.unsqueeze(0), pred.unsqueeze(0))
target = torch.index_select(target, 1, inds.view(-1) - 1)
dis = torch.mean(torch.norm((pred.transpose(1, 0) - target.transpose(1, 0)), dim=1), dim=0).item()
else:
dis = np.mean(np.linalg.norm(pred - target, axis=1))
if dis.item() < diameter[idx[0].item()]:
if dis < diameter[idx[0].item()]:
success_count[idx[0].item()] += 1
print('No.{0} Pass! Distance: {1}'.format(i, dis.item()))
fw.write('No.{0} Pass! Distance: {1}\n'.format(i, dis.item()))
print('No.{0} Pass! Distance: {1}'.format(i, dis))
fw.write('No.{0} Pass! Distance: {1}\n'.format(i, dis))
else:
print('No.{0} NOT Pass! Distance: {1}'.format(i, dis.item()))
fw.write('No.{0} NOT Pass! Distance: {1}\n'.format(i, dis.item()))
print('No.{0} NOT Pass! Distance: {1}'.format(i, dis))
fw.write('No.{0} NOT Pass! Distance: {1}\n'.format(i, dis))
num_count[idx[0].item()] += 1
for i in range(num_objects):
......
......@@ -206,9 +206,7 @@ for now in range(0, 2949):
T = Variable(torch.from_numpy(my_t.astype(np.float32))).cuda().view(1, 3).repeat(num_points, 1).contiguous().view(1, num_points, 3)
my_mat = quaternion_matrix(my_r)
R = Variable(torch.from_numpy(my_mat[:3, :3].astype(np.float32))).cuda().view(1, 3, 3)
my_mat[0][3] = my_t[0]
my_mat[1][3] = my_t[1]
my_mat[2][3] = my_t[2]
my_mat[0:3, 3] = my_t
new_cloud = torch.bmm((cloud - T), R).contiguous()
pred_r, pred_t = refiner(new_cloud, emb, index)
......@@ -218,15 +216,11 @@ for now in range(0, 2949):
my_t_2 = pred_t.view(-1).cpu().data.numpy()
my_mat_2 = quaternion_matrix(my_r_2)
my_mat_2[0][3] = my_t_2[0]
my_mat_2[1][3] = my_t_2[1]
my_mat_2[2][3] = my_t_2[2]
my_mat_2[0:3, 3] = my_t_2
my_mat_final = np.dot(my_mat, my_mat_2)
my_r_final = copy.deepcopy(my_mat_final)
my_r_final[0][3] = 0
my_r_final[1][3] = 0
my_r_final[2][3] = 0
my_r_final[0:3, 3] = 0
my_r_final = quaternion_from_matrix(my_r_final, True)
my_t_final = np.array([my_mat_final[0][3], my_mat_final[1][3], my_mat_final[2][3]])
......@@ -234,6 +228,8 @@ for now in range(0, 2949):
my_r = my_r_final
my_t = my_t_final
# Here 'my_pred' is the final pose estimation result after refinement ('my_r': quaternion, 'my_t': translation)
my_result.append(my_pred.tolist())
except ZeroDivisionError:
print("PoseCNN Detector Lost {0} at No.{1} keyframe".format(itemid, now))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment