Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
FruitBin
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Guillaume Duret
FruitBin
Commits
023c644f
Commit
023c644f
authored
2 years ago
by
Mahmoud Ahmed Ali
Browse files
Options
Downloads
Patches
Plain Diff
Add test resize file
parent
0bb58091
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
test_resize.py
+232
-0
232 additions, 0 deletions
test_resize.py
with
232 additions
and
0 deletions
test_resize.py
0 → 100644
+
232
−
0
View file @
023c644f
import
numpy
as
np
import
open3d
as
o3d
from
matplotlib
import
pyplot
as
plt
from
matplotlib
import
image
import
cv2
from
skimage.io
import
imshow
def
fps
(
points
,
centroid
,
n_samples
):
"""
points: [N, 3] array containing the whole point cloud
n_samples: samples you want in the sampled point cloud typically << N
"""
points
=
np
.
array
(
points
)
# Represent the points by their indices in points
points_left
=
np
.
arange
(
len
(
points
))
# [P]
# Initialise an array for the sampled indices
sample_inds
=
np
.
zeros
(
n_samples
,
dtype
=
'
int
'
)
# [S]
# Initialise distances to inf
dists
=
np
.
ones_like
(
points_left
)
*
float
(
'
inf
'
)
# [P]
# Select a point from points by its index, save it
selected
=
0
sample_inds
[
0
]
=
points_left
[
selected
]
# Delete selected
points_left
=
np
.
delete
(
points_left
,
selected
)
# [P - 1]
# Iteratively select points for a maximum of n_samples
for
i
in
range
(
1
,
n_samples
):
# Find the distance to the last added point in selected
# and all the others
last_added
=
sample_inds
[
i
-
1
]
dist_to_last_added_point
=
((
points
[
last_added
]
-
points
[
points_left
])
**
2
).
sum
(
-
1
)
# [P - i]
# If closer, updated distances
dists
[
points_left
]
=
np
.
minimum
(
dist_to_last_added_point
,
dists
[
points_left
])
# [P - i]
# We want to pick the one that has the largest nearest neighbour
# distance to the sampled points
selected
=
np
.
argmax
(
dists
[
points_left
])
sample_inds
[
i
]
=
points_left
[
selected
]
# Update points_left
points_left
=
np
.
delete
(
points_left
,
selected
)
return
points
[
sample_inds
]
def
labelDrawPoints
(
drawList
):
# (b, f = back, front), (l, r = left, right), (u, d = up , down)
drawDict
=
{}
drawDict
[
'
bld
'
]
=
((
int
(
drawList
[
0
][
0
])),
int
(
drawList
[
0
][
1
]))
drawDict
[
'
blu
'
]
=
((
int
(
drawList
[
1
][
0
])),
int
(
drawList
[
1
][
1
]))
drawDict
[
'
fld
'
]
=
((
int
(
drawList
[
2
][
0
])),
int
(
drawList
[
2
][
1
]))
drawDict
[
'
flu
'
]
=
((
int
(
drawList
[
3
][
0
])),
int
(
drawList
[
3
][
1
]))
drawDict
[
'
brd
'
]
=
((
int
(
drawList
[
4
][
0
])),
int
(
drawList
[
4
][
1
]))
drawDict
[
'
bru
'
]
=
((
int
(
drawList
[
5
][
0
])),
int
(
drawList
[
5
][
1
]))
drawDict
[
'
frd
'
]
=
((
int
(
drawList
[
6
][
0
])),
int
(
drawList
[
6
][
1
]))
drawDict
[
'
fru
'
]
=
((
int
(
drawList
[
7
][
0
])),
int
(
drawList
[
7
][
1
]))
return
drawDict
def
drawPose
(
img
,
drawPoints
,
colour
=
(
255
,
0
,
0
)):
# draw bounding box
cv2
.
line
(
img
,
drawPoints
[
'
bld
'
],
drawPoints
[
'
blu
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
bld
'
],
drawPoints
[
'
fld
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
bld
'
],
drawPoints
[
'
brd
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
blu
'
],
drawPoints
[
'
flu
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
blu
'
],
drawPoints
[
'
bru
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
fld
'
],
drawPoints
[
'
flu
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
fld
'
],
drawPoints
[
'
frd
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
flu
'
],
drawPoints
[
'
fru
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
fru
'
],
drawPoints
[
'
bru
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
fru
'
],
drawPoints
[
'
frd
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
frd
'
],
drawPoints
[
'
brd
'
],
colour
,
2
)
cv2
.
line
(
img
,
drawPoints
[
'
brd
'
],
drawPoints
[
'
bru
'
],
colour
,
2
)
def
showImage
(
img
):
# displays image using plt
imshow
(
img
)
plt
.
show
()
def
apply_fps
(
pcd
,
fps_num
):
point_cloud_in_numpy
=
np
.
asarray
(
pcd
.
points
)
center
=
point_cloud_in_numpy
.
mean
(
0
)
fps_points
=
fps
(
point_cloud_in_numpy
,
center
,
fps_num
)
return
fps_points
def
process2
(
pcd
,
R_exp
,
tVec
,
camera
,
img
,
vis
=
True
):
# point_cloud_in_numpy = np.asarray(pcd.points)
# center = point_cloud_in_numpy.mean(0)
#
# new_point = fps(point_cloud_in_numpy, center, fps_num)
# print(new_point)
# pcd_fps = o3d.geometry.PointCloud()
# pcd_fps.points = o3d.utility.Vector3dVector(pcd)
camera
=
np
.
array
(
camera
)
R_exp
=
np
.
array
(
R_exp
,
dtype
=
"
float64
"
)
tVec
=
np
.
array
(
tVec
,
dtype
=
"
float64
"
)
pcd_fps_numpy
=
np
.
asarray
(
pcd
)
keypoint_2d
=
cv2
.
projectPoints
(
pcd_fps_numpy
,
R_exp
,
tVec
,
camera
,
np
.
zeros
(
shape
=
[
8
,
1
],
dtype
=
'
float64
'
))
for
n
in
range
(
len
(
pcd_fps_numpy
)):
print
(
pcd_fps_numpy
[
n
],
'
==>
'
,
keypoint_2d
[
0
][
n
])
if
vis
:
out
=
np
.
zeros
((
img
.
shape
[
0
],
img
.
shape
[
1
],
16
))
fig
,
ax
=
plt
.
subplots
()
ax
.
imshow
(
img
)
for
n
in
range
(
len
(
pcd_fps_numpy
)):
point
=
keypoint_2d
[
0
][
n
]
ax
.
plot
(
point
[
0
][
0
],
point
[
0
][
1
],
marker
=
'
.
'
,
color
=
"
red
"
)
plt
.
imshow
(
img
)
plt
.
show
()
return
keypoint_2d
[
0
]
def
process
(
pcd_box
,
pcd2
,
R_exp
,
tVec
,
camera
,
img
):
camera
=
np
.
array
(
camera
)
R_exp
=
np
.
array
(
R_exp
,
dtype
=
"
float64
"
)
tVec
=
np
.
array
(
tVec
,
dtype
=
"
float64
"
)
pcd2_in_numpy2
=
np
.
asarray
(
pcd2
.
points
)
pcd2_in_numpy
=
pcd_box
keypoint_2d
=
cv2
.
projectPoints
(
pcd2_in_numpy
,
R_exp
,
tVec
,
camera
,
np
.
zeros
(
shape
=
[
5
,
1
],
dtype
=
'
float64
'
))
keypoint_2d2
=
cv2
.
projectPoints
(
pcd2_in_numpy2
,
R_exp
,
tVec
,
camera
,
np
.
zeros
(
shape
=
[
5
,
1
],
dtype
=
'
float64
'
))
for
n
in
range
(
len
(
pcd2_in_numpy
)):
print
(
pcd2_in_numpy
[
n
],
'
==>
'
,
keypoint_2d
[
0
][
n
])
points
=
[]
for
n
in
range
(
len
(
pcd2_in_numpy
)):
point
=
keypoint_2d
[
0
][
n
]
points
.
append
(
point
[
0
])
copy_img
=
img
.
copy
()
fig
,
ax
=
plt
.
subplots
()
ax
.
imshow
(
copy_img
)
for
n
in
range
(
len
(
pcd2_in_numpy2
)):
point
=
keypoint_2d2
[
0
][
n
]
plt
.
plot
(
int
(
point
[
0
][
0
]),
int
(
point
[
0
][
1
]),
marker
=
'
.
'
,
color
=
"
red
"
)
copy_img
=
img
.
copy
()
drawPose
(
copy_img
,
labelDrawPoints
(
points
),
(
0
,
1
,
0
))
showImage
(
copy_img
)
# ==============================================================================
def
generate_fps
(
data_name
,
camera
,
vis
=
False
,
resize
=
False
):
# Read the point cloud
for
obj
in
[
"
Banana
"
]:
obj_id
=
0
point_cloud
=
f
'
{
data_name
}
/Models/
{
obj
}
/
{
obj
.
lower
()
}
.ply
'
pcd
=
o3d
.
io
.
read_point_cloud
(
point_cloud
)
fps_points
=
apply_fps
(
pcd
,
8
)
# np.savetxt(f'{data_name}/FPS/{obj}_fps_3d.txt', fps_points)
point_cloud_in_numpy
=
np
.
asarray
(
pcd
.
points
)
center
=
fps_points
.
mean
(
0
)
fps_points
=
np
.
append
(
fps_points
,
[
center
],
axis
=
0
)
for
i
in
range
(
4995
):
img
=
image
.
imread
(
f
"
{
data_name
}
/RGB/
{
i
}
.png
"
)
if
resize
:
img
=
cv2
.
resize
(
img
.
copy
(),
(
640
,
480
))
pose
=
np
.
load
(
f
'
{
data_name
}
/Pose_transformed/
{
obj
}
/
{
i
}
.npy
'
)
R_exp
=
pose
[
0
:
3
,
0
:
3
]
tVec
=
pose
[
0
:
3
,
3
]
# process(pcd_bbox, pcd, R_exp, tVec, camera, img)
points
=
process2
(
fps_points
,
R_exp
,
tVec
,
camera
,
img
,
vis
)
# out = np.zeros((1, 17))
out
=
[
float
(
obj_id
)]
ind
=
1
for
point
in
points
:
# out[0][ind] = point[0][0] / img.shape[1]
# out[0][ind + 1] = point[0][1] / img.shape[0]
x
=
point
[
0
][
0
]
/
img
.
shape
[
1
]
y
=
point
[
0
][
1
]
/
img
.
shape
[
0
]
out
.
append
(
x
)
out
.
append
(
y
)
ind
+=
2
np
.
savetxt
(
f
'
label_cen/
{
i
}
.txt
'
,
np
.
array
(
out
).
reshape
(
1
,
len
(
out
)))
print
(
"
stop
"
)
obj_id
+=
1
if
__name__
==
'
__main__
'
:
choice
=
"
low
"
data_options
=
{
"
high
"
:
"
ground_truth_rgb
"
,
"
low
"
:
"
ground_truth_depth
"
}
dataset_type
=
data_options
[
choice
]
dataset_name
=
f
"
GUIMOD_
{
choice
}
"
if
choice
==
'
high
'
:
camera
=
np
.
matrix
([[
1386.4138492513919
,
0.0
,
960.5
],
[
0.0
,
1386.4138492513919
,
540.5
],
[
0.0
,
0.0
,
1.0
]])
else
:
camera
=
np
.
matrix
([[
1086.5054444841007
,
0.0
,
640.5
],
[
0.0
,
1086.5054444841007
,
360.5
],
[
0.0
,
0.0
,
1.0
]])
# resize image to 640*480
trans
=
np
.
matrix
([[
0.5
,
0.0
,
0.0
],
[
0.0
,
(
2
/
3
),
0.0
],
[
0.0
,
0.0
,
1.0
]])
camera_new
=
trans
@
camera
generate_fps
(
dataset_name
,
camera_new
,
False
,
True
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment