Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
FruitBin
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Guillaume Duret
FruitBin
Commits
43ec855a
Commit
43ec855a
authored
2 years ago
by
Guillaume Duret
Browse files
Options
Downloads
Patches
Plain Diff
optimisation masks ok
parent
42cb938c
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
compute_features.py
+16
-12
16 additions, 12 deletions
compute_features.py
instance_mask.py
+16
-105
16 additions, 105 deletions
instance_mask.py
main.py
+2
-3
2 additions, 3 deletions
main.py
with
34 additions
and
120 deletions
compute_features.py
+
16
−
12
View file @
43ec855a
...
@@ -7,15 +7,9 @@ import json
...
@@ -7,15 +7,9 @@ import json
from
utils
import
compute_categories_id
,
compute_id_good_occ
from
utils
import
compute_categories_id
,
compute_id_good_occ
from
scipy.spatial.transform
import
Rotation
from
scipy.spatial.transform
import
Rotation
from
bbox_2d
import
bbox_2d
from
bbox_2d
import
bbox_2d
import
cv2
from
instance_mask
import
instance
def
convert2
(
xyz
):
from
pose
import
convert2
(
R
,
P
,
Y
)
=
(
xyz
[
0
],
xyz
[
1
],
xyz
[
2
])
Q
=
Rotation
.
from_euler
(
seq
=
'
xyz
'
,
angles
=
[
R
,
P
,
Y
],
degrees
=
False
).
as_quat
()
r
=
Rotation
.
from_quat
(
Q
)
rotation
=
r
.
as_matrix
()
return
rotation
def
process_compute
(
data_name
,
Nb_camera
,
Nb_world
,
list_categories
,
occ_target
):
def
process_compute
(
data_name
,
Nb_camera
,
Nb_world
,
list_categories
,
occ_target
):
...
@@ -46,11 +40,11 @@ def process_compute(data_name, Nb_camera, Nb_world, list_categories, occ_target)
...
@@ -46,11 +40,11 @@ def process_compute(data_name, Nb_camera, Nb_world, list_categories, occ_target)
if
len
(
data_Bbox_2d
)
!=
len
(
data_3D_pose
)
:
if
len
(
data_Bbox_2d
)
!=
len
(
data_3D_pose
)
:
raise
TypeError
(
"
size of datas are differents !!
"
)
raise
TypeError
(
"
size of datas are differents !!
"
)
for
k
in
range
(
len
(
data_3D_pose
))
:
for
categories
in
list_categories
:
for
categories
in
list_
categories
:
if
len
(
cate
r
gories
_occ_array
[
categories
])
==
1
:
if
len
(
c
at
ergories_occ_array
[
categories
])
==
1
:
for
k
in
range
(
len
(
d
at
a_3D_pose
))
:
if
data_3D_pose
[
k
][
'
id
'
]
==
catergories_occ_array
[
categories
][
0
]:
if
data_3D_pose
[
k
][
'
id
'
]
==
catergories_occ_array
[
categories
][
0
]:
cont1
+=
1
cont1
+=
1
...
@@ -75,6 +69,16 @@ def process_compute(data_name, Nb_camera, Nb_world, list_categories, occ_target)
...
@@ -75,6 +69,16 @@ def process_compute(data_name, Nb_camera, Nb_world, list_categories, occ_target)
else
:
else
:
continue
continue
id
=
catergories_occ_array
[
categories
][
0
]
img
=
cv2
.
imread
(
f
"
{
data_name
}
/Instance_Segmentation/
{
p
}
.png
"
,
cv2
.
IMREAD_UNCHANGED
)
# plt.imread(path)
instance_img
=
instance
(
img
,
id
)
cv2
.
imwrite
(
f
"
{
data_name
}
/Generated/Instance_Mask/
{
categories
}
/
{
p
}
.png
"
,
255
*
instance_img
)
print
(
cont1
,
cont2
,
cont3
)
print
(
cont1
,
cont2
,
cont3
)
This diff is collapsed.
Click to expand it.
instance_mask.py
+
16
−
105
View file @
43ec855a
...
@@ -5,95 +5,6 @@ from pathlib import Path
...
@@ -5,95 +5,6 @@ from pathlib import Path
def
compute_categories_id
(
data_name
,
world
):
#Category = 'banana1'
#Category = 'pear2'
#Category = "orange2"
# Opening JSON file
f
=
open
(
f
'
{
data_name
}
/Meta/
{
world
}
.json
'
)
# returns JSON object as
# a dictionary
data
=
json
.
load
(
f
)
# Iterating through the json
# list
catergories_label_to_id
=
{}
catergories_id_to_label
=
{}
catergories_instance_array_cat_to_id
=
{}
catergories_instance_array_id_to_cat
=
{}
for
k
in
data
[
'
categories
'
]:
catergories_label_to_id
[
k
[
'
label
'
]]
=
k
[
'
id
'
]
catergories_id_to_label
[
k
[
'
id
'
]]
=
k
[
'
label
'
]
catergories_instance_array_cat_to_id
[
k
[
'
label
'
]]
=
[]
for
k
in
data
[
'
objects
'
]:
#print(k)
#catergories_instance_array[catergories_id_to_label[i['category_id']]]
catergories_instance_array_id_to_cat
[
k
[
'
id
'
]]
=
catergories_id_to_label
[
k
[
'
category_id
'
]]
catergories_instance_array_cat_to_id
[
catergories_id_to_label
[
k
[
'
category_id
'
]]].
append
(
k
[
'
id
'
])
# if i['category_id'] == id_category :
# print("Hello fruits instance")
# id_instances.append(i['id'])
# print(i['id'])
# print("catergories_instance_array_cat_to_id : ", catergories_instance_array_cat_to_id)
# print("catergories_instance_array_id_to_cat : ", catergories_instance_array_id_to_cat)
# Closing file
f
.
close
()
return
catergories_instance_array_id_to_cat
,
catergories_instance_array_cat_to_id
def
compute_id_good_occ
(
data_name
,
count
,
catergories_instance_array_id_to_cat
,
catergories_instance_array_cat_to_id
,
Occ_wanted
):
f2
=
open
(
f
'
{
data_name
}
/Occlusion/
{
count
}
.json
'
)
data2
=
json
.
load
(
f2
)
catergories_occ_array
=
{}
for
cat
in
catergories_instance_array_cat_to_id
:
#print(cat)
catergories_occ_array
[
cat
]
=
[]
for
i
in
data2
:
#print('i : ',i)
#print(i['id'])
#print(id_instances)
if
i
[
'
occlusion_value
'
]
>
0.5
:
catergories_occ_array
[
catergories_instance_array_id_to_cat
[
i
[
'
id
'
]]].
append
(
i
[
'
id
'
])
# if i['id'] in id_instances :
# print("Hello banana instance occ")
# if i['occlusion_value'] > 0.5 :
# id_instances_good.append(i['id'])
# print(i['id'])
# print(i['occlusion_value'])
print
(
catergories_occ_array
)
# Closing file
f2
.
close
()
return
catergories_occ_array
def
instance
(
im
,
id
):
def
instance
(
im
,
id
):
#im = im * 255
#im = im * 255
im
[
im
==
id
]
=
255
im
[
im
==
id
]
=
255
...
@@ -104,36 +15,36 @@ def instance(im, id):
...
@@ -104,36 +15,36 @@ def instance(im, id):
return
im
return
im
def
generate_instance_mask
(
data_name
,
Nb_camera
,
Nb_world
,
list_categories
,
occ_target
):
#
def generate_instance_mask(data_name, Nb_camera, Nb_world,list_categories, occ_target):
for
i
in
range
(
1
,
Nb_world
+
1
):
# worlds
#
for i in range(1, Nb_world + 1): # worlds
catergories_instance_array_id_to_cat
,
catergories_instance_array_cat_to_id
=
compute_categories_id
(
data_name
,
i
)
#
catergories_instance_array_id_to_cat, catergories_instance_array_cat_to_id = compute_categories_id(data_name, i)
for
j
in
range
(
1
,
Nb_camera
+
1
):
# cameras
#
for j in range(1, Nb_camera+1): # cameras
p
=
((
i
-
1
)
*
Nb_camera
)
+
j
#
p = ((i-1)*Nb_camera) + j
catergories_occ_array
=
compute_id_good_occ
(
data_name
,
p
,
catergories_instance_array_id_to_cat
,
catergories_instance_array_cat_to_id
,
occ_target
)
#
catergories_occ_array = compute_id_good_occ(data_name, p, catergories_instance_array_id_to_cat, catergories_instance_array_cat_to_id, occ_target)
for
categories
in
list_categories
:
#
for categories in list_categories:
if
len
(
catergories_occ_array
[
categories
])
==
1
:
#
if len(catergories_occ_array[categories]) == 1 :
id
=
catergories_occ_array
[
categories
][
0
]
#
id = catergories_occ_array[categories][0]
print
(
"
iddd :
"
,
id
)
#
print("iddd : ",id)
img
=
cv2
.
imread
(
f
"
{
data_name
}
/Instance_Segmentation/
{
p
}
.png
"
,
cv2
.
IMREAD_UNCHANGED
)
# plt.imread(path)
#
img = cv2.imread(f"{data_name}/Instance_Segmentation/{p}.png", cv2.IMREAD_UNCHANGED) # plt.imread(path)
#print("img[817][308] : ", img[817][308])
#
#print("img[817][308] : ", img[817][308])
print
(
"
img[308][817] :
"
,
img
[
308
][
817
])
#
print("img[308][817] : ", img[308][817])
instance_img
=
instance
(
img
,
id
)
#
instance_img = instance(img, id)
print
(
"
instance_img[308][817] :
"
,
instance_img
[
308
][
817
])
#
print("instance_img[308][817] : ", instance_img[308][817])
cv2
.
imwrite
(
f
"
{
data_name
}
/Generated/Instance_Mask/
{
categories
}
/
{
p
}
.png
"
,
255
*
instance_img
)
#
cv2.imwrite(f"{data_name}/Generated/Instance_Mask/{categories}/{p}.png", 255*instance_img)
This diff is collapsed.
Click to expand it.
main.py
+
2
−
3
View file @
43ec855a
...
@@ -4,13 +4,12 @@ import json
...
@@ -4,13 +4,12 @@ import json
from
prepare_data
import
reform_data
from
prepare_data
import
reform_data
#from pose import transform_pose
#from pose import transform_pose
#from bbox_2d import generate_2d_bbox
#from bbox_2d import generate_2d_bbox
from
instance_mask
import
generate_instance_mask
#
from instance_mask import generate_instance_mask
from
fps_alg
import
generate_fps
from
fps_alg
import
generate_fps
from
bbox_3d
import
generate_3d_bbox
from
bbox_3d
import
generate_3d_bbox
from
compute_features
import
process_compute
from
compute_features
import
process_compute
import
shutil
import
shutil
def
generate_folders
(
name
,
list_categories
):
def
generate_folders
(
name
,
list_categories
):
is_exist
=
os
.
path
.
exists
(
name
)
is_exist
=
os
.
path
.
exists
(
name
)
if
not
is_exist
:
if
not
is_exist
:
...
@@ -66,6 +65,6 @@ if __name__ == '__main__':
...
@@ -66,6 +65,6 @@ if __name__ == '__main__':
process_compute
(
dataset_name
,
Nb_camera
,
Nb_world
,
list_categories
,
occ_target
)
process_compute
(
dataset_name
,
Nb_camera
,
Nb_world
,
list_categories
,
occ_target
)
#transform_pose(dataset_name, Nb_camera, Nb_world, list_categories, occ_target)
#transform_pose(dataset_name, Nb_camera, Nb_world, list_categories, occ_target)
#generate_2d_bbox(dataset_name, Nb_camera, Nb_world, list_categories, occ_target)
#generate_2d_bbox(dataset_name, Nb_camera, Nb_world, list_categories, occ_target)
generate_instance_mask
(
dataset_name
,
Nb_camera
,
Nb_world
,
list_categories
,
occ_target
)
#
generate_instance_mask(dataset_name, Nb_camera, Nb_world, list_categories, occ_target)
generate_fps
(
dataset_name
,
camera
,
Nb_camera
,
Nb_world
,
list_categories
,
True
)
generate_fps
(
dataset_name
,
camera
,
Nb_camera
,
Nb_world
,
list_categories
,
True
)
#generate_3d_bbox(dataset_name)
#generate_3d_bbox(dataset_name)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment