Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
FruitBin
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Guillaume Duret
FruitBin
Commits
c1fbacf6
Commit
c1fbacf6
authored
2 years ago
by
Guillaume Duret
Browse files
Options
Downloads
Patches
Plain Diff
reading script of json file stat from compute statistics
parent
886793ec
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
read_count.py
+310
-0
310 additions, 0 deletions
read_count.py
with
310 additions
and
0 deletions
read_count.py
0 → 100644
+
310
−
0
View file @
c1fbacf6
import
os
import
numpy
as
np
from
prepare_data
import
reform_data
from
fps_alg
import
apply_fps
from
bbox_3d
import
get_3D_bbox
from
compute_features
import
process_compute
import
open3d
as
o3d
from
scipy.spatial
import
distance
import
argparse
import
json
import
pandas
as
pd
import
altair
as
alt
def
generate_folders
(
name
,
list_categories
,
scenario
):
is_exist
=
os
.
path
.
exists
(
name
)
if
not
is_exist
:
os
.
mkdir
(
name
)
folders
=
[
"
RGB
"
,
"
RGB_Gen
"
,
"
RGB_resized
"
,
"
Meta_Gen
"
,
"
Depth
"
,
"
Mask
"
,
"
Meta
"
,
"
Pose
"
,
"
Bbox_2d
"
,
"
Bbox_2d_loose
"
,
"
Bbox_3d
"
,
"
Bbox_3d_Gen
"
,
"
Instance_Segmentation
"
,
"
Semantic_Segmentation
"
,
"
Instance_Mask
"
,
"
Instance_Mask_resized
"
,
"
Occlusion
"
,
"
Models
"
,
"
Pose_transformed
"
,
"
Bbox
"
,
"
FPS
"
,
"
FPS_resized
"
]
for
f
in
folders
:
is_exist
=
os
.
path
.
exists
(
f
"
{
name
}
/
{
f
}
"
)
if
not
is_exist
:
if
f
not
in
[
"
RGB_Gen
"
,
"
RGB_resized
"
,
"
Instance_Mask
"
,
"
Instance_Mask_resized
"
,
"
Meta_Gen
"
,
"
Models
"
,
"
Pose_transformed
"
,
"
Bbox
"
,
"
Bbox_3d_Gen
"
,
"
FPS
"
,
"
FPS_resized
"
]:
os
.
mkdir
(
f
"
{
name
}
/
{
f
}
"
)
else
:
for
cat
in
list_categories
:
is_exist2
=
os
.
path
.
exists
(
f
"
{
name
}
/Generated/
{
cat
}
"
)
if
not
is_exist2
:
os
.
makedirs
(
f
"
{
name
}
/Generated/
{
cat
}
"
)
is_exist2
=
os
.
path
.
exists
(
f
"
{
name
}
/Generated/
{
cat
}
/Pose_transformed
"
)
if
not
is_exist2
:
os
.
makedirs
(
f
"
{
name
}
/Generated/
{
cat
}
/Pose_transformed
"
)
for
scenario
in
[
"
Worlds
"
,
"
Cameras
"
,
"
Mix_all
"
]
:
is_exist2
=
os
.
path
.
exists
(
f
"
{
name
}
/Generated_
{
scenario
}
_Training/
{
cat
}
/
{
f
}
"
)
if
not
is_exist2
:
os
.
makedirs
(
f
"
{
name
}
/Generated_
{
scenario
}
_Training/
{
cat
}
/
{
f
}
"
)
is_exist2
=
os
.
path
.
exists
(
f
"
{
name
}
/Generated_
{
scenario
}
_Evaluating/
{
cat
}
/
{
f
}
"
)
if
not
is_exist2
:
os
.
makedirs
(
f
"
{
name
}
/Generated_
{
scenario
}
_Evaluating/
{
cat
}
/
{
f
}
"
)
is_exist2
=
os
.
path
.
exists
(
f
"
{
name
}
/Generated_
{
scenario
}
_Testing/
{
cat
}
/
{
f
}
"
)
if
not
is_exist2
:
os
.
makedirs
(
f
"
{
name
}
/Generated_
{
scenario
}
_Testing/
{
cat
}
/
{
f
}
"
)
is_exist2
=
os
.
path
.
exists
(
f
"
{
name
}
/Generated_
{
scenario
}
_dont_save/
{
cat
}
/
{
f
}
"
)
if
not
is_exist2
:
os
.
makedirs
(
f
"
{
name
}
/Generated_
{
scenario
}
_dont_save/
{
cat
}
/
{
f
}
"
)
def
calc_pts_diameter2
(
pts
):
"""
Calculates the diameter of a set of 3D points (i.e. the maximum distance
between any two points in the set). Faster but requires more memory than
calc_pts_diameter.
:param pts: nx3 ndarray with 3D points.
:return: The calculated diameter.
"""
dists
=
distance
.
cdist
(
pts
,
pts
,
'
euclidean
'
)
diameter
=
np
.
max
(
dists
)
return
diameter
def
prep_df
(
df
,
name
):
df
=
df
.
stack
().
reset_index
()
df
.
columns
=
[
'
c1
'
,
'
c2
'
,
'
values
'
]
df
[
'
DF
'
]
=
name
return
df
if
__name__
==
'
__main__
'
:
# Create the parser
parser
=
argparse
.
ArgumentParser
()
# Parse the argument
args
=
parser
.
parse_args
()
scenario
=
"
Worlds
"
### parameters ###
Categories
=
[]
# to read
Nb_instance
=
1
occ_target
=
0.5
dataset_src
=
"
/gpfsscratch/rech/uli/ubn15wo/dataset/s2rg/Fruits_all_medium/data/
"
#dataset_src = "/media/mahmoud/E/Fruits_easy/data"
#dataset_src = "/media/gduret/DATA/dataset/s2rg/Fruits_all_medium/data"
choice
=
"
low
"
# depth of rgb resolution datas
data_options
=
{
"
high
"
:
"
ground_truth_rgb
"
,
"
low
"
:
"
ground_truth_depth
"
}
dataset_type
=
data_options
[
choice
]
dataset_name
=
f
"
/gpfsscratch/rech/uli/ubn15wo/dataset/s2rg/Fruits_all_medium/GUIMOD_
{
choice
}
"
list_categories
=
[
"
apple2
"
,
"
apricot
"
,
"
banana1
"
,
"
kiwi1
"
,
"
lemon2
"
,
"
orange2
"
,
"
peach1
"
,
"
pear2
"
]
#list_Nb_instance = [ "apple2" , "apricot", "banana1", "kiwi1", "lemon2", "orange2", "peach1", "pear2"]
path_json
=
"
Count_150000.json
"
if
os
.
path
.
isfile
(
path_json
):
with
open
(
path_json
)
as
f
:
list_count_categories
=
json
.
load
(
f
)
scenarios
=
[
"
Worlds
"
,
"
Cameras
"
,
"
Mix_all
"
]
destination_folders_list
=
{}
for
scenario_loop
in
scenarios
:
destination_folders_list
[
scenario_loop
]
=
[
f
"
Generated_
{
scenario_loop
}
_Testing
"
,
f
"
Generated_
{
scenario_loop
}
_Evaluating
"
,
f
"
Generated_
{
scenario_loop
}
_Training
"
,
f
"
Generated_
{
scenario_loop
}
_dont_save
"
]
print
(
list_count_categories
)
stat_cat
=
{}
worlds_train
=
[]
worlds_eval
=
[]
worlds_test
=
[]
cameras_train
=
[]
cameras_eval
=
[]
cameras_test
=
[]
mix_train
=
[]
mix_eval
=
[]
mix_test
=
[]
array_apple
=
[]
array_apricot
=
[]
array_banana
=
[]
array_kiwi
=
[]
array_lemon
=
[]
array_orange
=
[]
array_peach
=
[]
array_pear
=
[]
stat_cat_inst
=
{}
for
scenario_loop
in
scenarios
:
stat_cat_inst
[
scenario_loop
]
=
{}
for
cat
in
list_categories
:
stat_cat_inst
[
scenario_loop
][
cat
]
=
{}
for
cat
in
list_categories
:
stat_cat
[
cat
]
=
{}
for
scenario_loop
in
scenarios
:
stat_cat
[
cat
][
scenario_loop
]
=
{}
for
destination_folder_loop
in
destination_folders_list
[
scenario_loop
]
:
# [f"Generated_{scenario}_Testing", f"Generated_{scenario}_Evaluating", f"Generated_{scenario}_Training"] :
#print("scenario_loop : " , scenario_loop)
#print("destination_folder_loop : " , destination_folder_loop)
#print("cat : " , cat)
#print("list_count_categories[scenario_loop][destination_folder_loop][cat][1_instances] : " , list_count_categories[scenario_loop][destination_folder_loop][cat]["1_instances"])
#print(list_count_categories[scenario_loop][destination_folder_loop])
if
destination_folder_loop
==
"
Generated_Worlds_Testing
"
:
print
(
"
\n
Generated_Wolrds_Testing1
"
)
worlds_test
.
append
(
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
])
if
destination_folder_loop
==
"
Generated_Cameras_Testing
"
:
print
(
"
\n
Generated_Wolrds_Testing2
"
)
cameras_test
.
append
(
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
])
if
destination_folder_loop
==
"
Generated_Mix_all_Testing
"
:
print
(
"
\n
Generated_Wolrds_Testing3
"
)
mix_test
.
append
(
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
])
if
destination_folder_loop
==
"
Generated_Worlds_Evaluating
"
:
print
(
"
\n
Generated_Wolrds_Testing4
"
)
worlds_eval
.
append
(
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
])
if
destination_folder_loop
==
"
Generated_Cameras_Evaluating
"
:
print
(
"
\n
Generated_Wolrds_Testing5
"
)
cameras_eval
.
append
(
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
])
if
destination_folder_loop
==
"
Generated_Mix_all_Evaluating
"
:
print
(
"
\n
Generated_Wolrds_Testing6
"
)
mix_eval
.
append
(
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
])
if
destination_folder_loop
==
"
Generated_Worlds_Training
"
:
print
(
"
\n
Generated_Wolrds_Testing7
"
)
worlds_train
.
append
(
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
])
if
destination_folder_loop
==
"
Generated_Cameras_Training
"
:
print
(
"
\n
Generated_Wolrds_Testing8
"
)
cameras_train
.
append
(
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
])
if
destination_folder_loop
==
"
Generated_Mix_all_Training
"
:
print
(
"
\n
Generated_Wolrds_Testing9
"
)
mix_train
.
append
(
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
])
if
cat
in
list_count_categories
[
scenario_loop
][
destination_folder_loop
].
keys
()
:
stat_cat
[
cat
][
scenario_loop
][
destination_folder_loop
]
=
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
"
1_instances
"
]
#print(list_count_categories[scenario_loop][destination_folder_loop].keys())
if
cat
in
list_count_categories
[
scenario_loop
][
destination_folder_loop
].
keys
()
:
# because dont save empty for world and camera scenario
for
nb_inst
in
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
].
keys
()
:
if
nb_inst
in
stat_cat_inst
[
scenario_loop
][
cat
].
keys
()
:
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
]
=
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
]
+
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
nb_inst
]
else
:
stat_cat_inst
[
scenario_loop
][
cat
][
nb_inst
]
=
list_count_categories
[
scenario_loop
][
destination_folder_loop
][
cat
][
nb_inst
]
#print(stat_cat)
print
(
stat_cat_inst
)
print
(
worlds_train
)
print
(
worlds_eval
)
print
(
worlds_test
)
print
(
cameras_train
)
print
(
cameras_eval
)
print
(
cameras_test
)
print
(
mix_train
)
print
(
mix_eval
)
print
(
mix_test
)
# for scenario_loop in scenarios :
# for cat in list_categories :
# for destination_folder_loop in destination_folders_list[scenario_loop] :
# stat_cat_inst[scenario_loop][cat][nb_inst]
df1_train
=
pd
.
DataFrame
(
np
.
resize
(
np
.
concatenate
((
np
.
array
(
worlds_train
),
np
.
array
(
cameras_train
),
np
.
array
(
mix_train
))
),
(
3
,
8
)),
index
=
[
"
World
"
,
"
Cameras
"
,
"
All
"
],
columns
=
[
"
apple
"
,
"
apricot
"
,
"
banana
"
,
"
kiwi
"
,
"
lemon
"
,
"
orange
"
,
"
peach
"
,
"
pear
"
])
df2_eval
=
pd
.
DataFrame
(
np
.
resize
(
np
.
concatenate
((
np
.
array
(
worlds_eval
),
np
.
array
(
cameras_eval
),
np
.
array
(
mix_eval
))
),
(
3
,
8
)),
index
=
[
"
World
"
,
"
Cameras
"
,
"
All
"
],
columns
=
[
"
apple
"
,
"
apricot
"
,
"
banana
"
,
"
kiwi
"
,
"
lemon
"
,
"
orange
"
,
"
peach
"
,
"
pear
"
])
df3_test
=
pd
.
DataFrame
(
np
.
resize
(
np
.
concatenate
((
np
.
array
(
worlds_test
),
np
.
array
(
cameras_test
),
np
.
array
(
mix_test
))
),
(
3
,
8
)),
index
=
[
"
World
"
,
"
Cameras
"
,
"
All
"
],
columns
=
[
"
apple
"
,
"
apricot
"
,
"
banana
"
,
"
kiwi
"
,
"
lemon
"
,
"
orange
"
,
"
peach
"
,
"
pear
"
])
df1
=
prep_df
(
df1_train
,
'
Train
'
)
df2
=
prep_df
(
df2_eval
,
'
Eval
'
)
df3
=
prep_df
(
df3_test
,
'
Test
'
)
df
=
pd
.
concat
([
df1
,
df2
,
df3
])
# print(np.resize(np.concatenate((np.array(worlds_train), np.array(cameras_train), np.array(mix_train)) ), (3,8)))
# print(np.random.rand(4,3))
# df1=pd.DataFrame(10*np.random.rand(4,3),index=["A","B","C","D"],columns=["I","J","K"])
# df2=pd.DataFrame(10*np.random.rand(4,3),index=["A","B","C","D"],columns=["I","J","K"])
# df3=pd.DataFrame(10*np.random.rand(4,3),index=["A","B","C","D"],columns=["I","J","K"])
# def prep_df(df, name):
# df = df.stack().reset_index()
# df.columns = ['c1', 'c2', 'values']
# df['DF'] = name
# return df
# df1 = prep_df(df1, 'DF1')
# df2 = prep_df(df2, 'DF2')
# df3 = prep_df(df3, 'DF3')
# df = pd.concat([df1, df2, df3])
alt
.
renderers
.
enable
(
'
altair_viewer
'
)
chart
=
alt
.
Chart
(
df
).
mark_bar
().
encode
(
# tell Altair which field to group columns on
x
=
alt
.
X
(
'
c2:N
'
,
title
=
None
),
# tell Altair which field to use as Y values and how to calculate
y
=
alt
.
Y
(
'
sum(values):Q
'
,
axis
=
alt
.
Axis
(
grid
=
False
,
title
=
None
)),
# tell Altair which field to use to use as the set of columns to be represented in each group
column
=
alt
.
Column
(
'
c1:N
'
,
title
=
None
),
# tell Altair which field to use for color segmentation
color
=
alt
.
Color
(
'
DF:N
'
,
scale
=
alt
.
Scale
(
# make it look pretty with an enjoyable color pallet
range
=
[
'
#96ceb4
'
,
'
#ffcc5c
'
,
'
#ff6f69
'
],
),
))
\
.
configure_view
(
# remove grid lines around column clusters
strokeOpacity
=
0
)
chart
.
show
()
with
open
(
f
'
Count_Stat.json
'
,
mode
=
'
w
'
)
as
f
:
f
.
write
(
json
.
dumps
(
stat_cat
,
indent
=
4
))
with
open
(
f
'
Count_Stat_instance.json
'
,
mode
=
'
w
'
)
as
f
:
f
.
write
(
json
.
dumps
(
stat_cat_inst
,
indent
=
4
))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment