Skip to content
Snippets Groups Projects
Commit e4fcd45c authored by Guillaume Duret's avatar Guillaume Duret
Browse files

add main_rearange before main

parent 8a96707f
No related branches found
No related tags found
No related merge requests found
import os
import numpy as np
from prepare_data import reform_data
from fps_alg import apply_fps
from bbox_3d import get_3D_bbox
from compute_features import process_compute
import open3d as o3d
from scipy.spatial import distance
import argparse
def generate_folders(name, list_categories, scenario):
is_exist = os.path.exists(name)
if not is_exist:
os.mkdir(name)
folders = ["RGB", "RGB_Gen", "RGB_resized", "Meta_Gen", "Depth", "Mask", "Meta", "Pose", "Bbox_2d", "Bbox_2d_loose", "Bbox_3d", "Bbox_3d_Gen", "Instance_Segmentation", "Semantic_Segmentation", "Instance_Mask", "Instance_Mask_resized", "Occlusion", "Models", "Pose_transformed", "Bbox", "FPS", "FPS_resized"]
for f in folders:
is_exist = os.path.exists(f"{name}/{f}")
if not is_exist:
if f not in ["RGB_Gen", "RGB_resized", "Instance_Mask", "Instance_Mask_resized", "Meta_Gen", "Models", "Pose_transformed", "Bbox", "Bbox_3d_Gen", "FPS" , "FPS_resized"]:
os.mkdir(f"{name}/{f}")
else:
for cat in list_categories:
is_exist2 = os.path.exists(f"{name}/Generated/{cat}")
if not is_exist2:
os.makedirs(f"{name}/Generated/{cat}")
is_exist2 = os.path.exists(f"{name}/Generated/{cat}/Pose_transformed")
if not is_exist2:
os.makedirs(f"{name}/Generated/{cat}/Pose_transformed")
for scenario in ["Worlds", "Cameras", "Mix_all"] :
is_exist2 = os.path.exists(f"{name}/Generated_{scenario}_Training/{cat}/{f}")
if not is_exist2:
os.makedirs(f"{name}/Generated_{scenario}_Training/{cat}/{f}")
is_exist2 = os.path.exists(f"{name}/Generated_{scenario}_Evaluating/{cat}/{f}")
if not is_exist2:
os.makedirs(f"{name}/Generated_{scenario}_Evaluating/{cat}/{f}")
is_exist2 = os.path.exists(f"{name}/Generated_{scenario}_Testing/{cat}/{f}")
if not is_exist2:
os.makedirs(f"{name}/Generated_{scenario}_Testing/{cat}/{f}")
is_exist2 = os.path.exists(f"{name}/dont_save/{cat}/{f}")
if not is_exist2:
os.makedirs(f"{name}/dont_save/{cat}/{f}")
def calc_pts_diameter2(pts):
"""Calculates the diameter of a set of 3D points (i.e. the maximum distance
between any two points in the set). Faster but requires more memory than
calc_pts_diameter.
:param pts: nx3 ndarray with 3D points.
:return: The calculated diameter.
"""
dists = distance.cdist(pts, pts, 'euclidean')
diameter = np.max(dists)
return diameter
if __name__ == '__main__':
# Create the parser
parser = argparse.ArgumentParser()
# Add an argument
parser.add_argument('--Nb_worlds', type=int, required=True)
parser.add_argument('--World_begin', type=int, required=True)
parser.add_argument('--dataset_id', type=str, required=True)
# Parse the argument
args = parser.parse_args()
scenario = "Worlds"
### parameters ###
Categories = [] # to read
Nb_instance = 1
occ_target = 0.5
dataset_src = f"/gpfsscratch/rech/uli/ubn15wo/data{args.dataset_id}"
#dataset_src = "/media/mahmoud/E/Fruits_easy/data"
#dataset_src = "/media/gduret/DATA/dataset/s2rg/Fruits_all_medium/data"
choice = "low" # depth of rgb resolution datas
data_options = {"high": "ground_truth_rgb",
"low": "ground_truth_depth"}
dataset_type = data_options[choice]
dataset_name = f"/gpfsscratch/rech/uli/ubn15wo/dataset{args.dataset_id}/s2rg/Fruits_all_medium/GUIMOD_{choice}"
list_categories = ["banana1", "kiwi1", "pear2", "strawberry1", "apricot", "orange2", "peach1", "lemon2", "apple2" ]
Nb_camera = 15
#Nb_world = 10000
generate_folders(dataset_name, list_categories, scenario)
if choice == 'high':
camera = np.matrix([[1386.4138492513919, 0.0, 960.5],
[0.0, 1386.4138492513919, 540.5],
[0.0, 0.0, 1.0]])
# (640/1920 = 1 / 3), (480/1080 = 4 / 9)
trans = np.matrix([[1 / 3, 0.0, 0.0],
[0.0, (4 / 9), 0.0],
[0.0, 0.0, 1.0]])
elif choice == 'low':
camera = np.matrix([[1086.5054444841007, 0.0, 640.5],
[0.0, 1086.5054444841007, 360.5],
[0.0, 0.0, 1.0]])
#
trans = np.matrix([[0.5, 0.0, 0.0],
[0.0, (2 / 3), 0.0],
[0.0, 0.0, 1.0]])
new_size = (640, 480)
new_camera = trans @ camera
#np.savetxt(f'{dataset_name}/Generated/camera_{choice}.txt', camera)
reform_data(dataset_src, dataset_name, dataset_type, Nb_camera, args.World_begin, args.Nb_worlds)
list_categories = ["banana1", "kiwi1", "pear2", "strawberry1", "apricot", "orange2", "peach1", "lemon2", "apple2" ]
objs = {"banana1": [ 0.02949700132012367249, 0.1511049866676330566, 0.06059300713241100311 ],
"kiwi1": [ 0.04908600077033042908, 0.07206099480390548706, 0.04909799993038177490 ],
"pear2": [ 0.06601099669933319092, 0.1287339925765991211, 0.06739201396703720093 ],
"strawberry1": [0.01698100194334983826, 0.02203200198709964752, 0.01685700193047523499],
"apricot": [0.04213499650359153748, 0.05482299625873565674, 0.04333199933171272278],
"orange2": [ 0.07349500805139541626, 0.07585700601339340210, 0.07458199560642242432 ],
"peach1": [ 0.07397901266813278198, 0.07111301273107528687, 0.07657301425933837891 ],
"lemon2": [0.04686100035905838013, 0.04684200137853622437, 0.07244800776243209839],
"apple2": [0.05203099921345710754, 0.04766000062227249146, 0.05089000239968299866]}
for categories in list_categories:
point_cloud = f"Models/{categories}/{categories.lower()}.ply"
pcd = o3d.io.read_point_cloud(point_cloud)
fps_points = apply_fps(pcd, 8)
np.savetxt(f'{dataset_name}/Generated/{categories}/{categories}_fps_3d.txt', fps_points)
point_cloud_in_numpy = np.asarray(pcd.points)
dim = calc_pts_diameter2(point_cloud_in_numpy) * 100
np.savetxt(f'{dataset_name}/Generated/{categories}/{categories}_diameter.txt', np.array([dim]))
size_bb = objs[categories]
ext = [x / 2 for x in size_bb]
bbox = get_3D_bbox(ext)
np.savetxt(f'{dataset_name}/Generated/{categories}/{categories}_bbox_3d.txt', bbox) # save
#process_compute(dataset_name, camera, new_camera, new_size, Nb_camera, args.World_begin, args.Nb_worlds, list_categories, occ_target, False)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment