Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
Pvnet_FruitBIn
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Guillaume Duret
Pvnet_FruitBIn
Commits
2c70f606
Commit
2c70f606
authored
2 years ago
by
Mahmoud Ahmed Ali
Browse files
Options
Downloads
Patches
Plain Diff
Add data file
parent
9b4bc38c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
data.py
+339
-0
339 additions, 0 deletions
data.py
with
339 additions
and
0 deletions
data.py
0 → 100644
+
339
−
0
View file @
2c70f606
import
os
,
pandas
as
pd
,
numpy
as
np
,
tensorflow
as
tf
,
math
,
random
,
matplotlib
.
pyplot
as
plt
,
sys
,
pickle
,
cv2
from
PIL
import
Image
from
pdb
import
set_trace
from
matplotlib
import
pyplot
from
decimal
import
Decimal
from
skimage.io
import
imshow
def
getRandomImage
(
modelClass
=
'
cat
'
):
# retrieves random image and label set
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
modelClass
imageList
=
os
.
listdir
(
basePath
+
'
/rgb/
'
)
randNum
=
random
.
randrange
(
len
(
imageList
))
image
=
imageList
[
randNum
]
with
open
(
basePath
+
'
/labels/
'
+
os
.
listdir
(
basePath
+
'
/labels/
'
)[
randNum
])
as
f
:
labels
=
f
.
readline
().
split
(
'
'
)[
1
:
19
]
print
(
image
)
image
=
filePathToArray
(
basePath
+
'
/rgb/
'
+
image
)
# image = imread(basePath + image)
return
image
,
labels
def
getDataSplitImage
(
getValid
,
modelClass
=
'
cat
'
):
# retrieves random image and label set from specified dataset
trainData
,
validData
=
getDataSplit
(
modelClass
=
modelClass
)
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
modelClass
if
getValid
:
choice
=
random
.
choice
(
validData
)
with
open
(
basePath
+
'
/labels/
'
+
choice
[
2
])
as
f
:
labels
=
f
.
readline
().
split
(
'
'
)[
1
:
19
]
image
=
filePathToArray
(
basePath
+
'
/rgb/
'
+
choice
[
0
])
mask
=
filePathToArray
(
basePath
+
'
/mask/
'
+
choice
[
1
])
else
:
choice
=
random
.
choice
(
trainData
)
with
open
(
basePath
+
'
/labels/
'
+
choice
[
2
])
as
f
:
labels
=
f
.
readline
().
split
(
'
'
)[
1
:
19
]
image
=
filePathToArray
(
basePath
+
'
/rgb/
'
+
choice
[
0
])
mask
=
filePathToArray
(
basePath
+
'
/mask/
'
+
choice
[
1
])
return
image
,
labels
,
mask
,
choice
,
validData
def
getAllValData
(
modelClass
=
'
cat
'
):
# retrieves random image and label set from specified dataset
trainData
,
validData
=
getDataSplit
(
modelClass
=
modelClass
)
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
modelClass
image_ls
=
[]
labels_ls
=
[]
mask_ls
=
[]
for
choice
in
validData
:
with
open
(
basePath
+
'
/labels/
'
+
choice
[
2
])
as
f
:
labels
=
f
.
readline
().
split
(
'
'
)[
1
:
19
]
labels_ls
.
append
(
labels
)
image
=
filePathToArray
(
basePath
+
'
/rgb/
'
+
choice
[
0
])
mask
=
filePathToArray
(
basePath
+
'
/mask/
'
+
choice
[
1
])
image_ls
.
append
(
image
)
mask_ls
.
append
(
mask
)
return
image_ls
,
labels_ls
,
mask_ls
def
getMasterList
(
basePath
):
# returns list with image, mask, and label filenames
imageList
=
sorted
(
os
.
listdir
(
basePath
+
'
/rgb/
'
))
maskList
=
sorted
(
os
.
listdir
(
basePath
+
'
/mask/
'
))
labelList
=
sorted
(
os
.
listdir
(
basePath
+
'
/labels/
'
))
if
len
(
imageList
)
!=
len
(
maskList
)
or
len
(
imageList
)
!=
len
(
labelList
):
raise
Exception
(
"
image, mask, and label list lengths do not match.
"
)
return
[[
a
,
b
,
c
]
for
a
,
b
,
c
in
zip
(
imageList
,
maskList
,
labelList
)]
def
classTrainingGenerator
(
model
,
batchSize
,
masterList
=
None
,
height
=
480
,
width
=
640
,
augmentation
=
True
,
**
unused
):
# take input image, resize and store as rgb, create mask training data
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
model
if
masterList
is
None
:
masterList
=
getMasterList
(
basePath
)
random
.
shuffle
(
masterList
)
i
=
0
while
True
:
xBatch
=
[]
yClassBatch
=
[]
for
b
in
range
(
batchSize
):
if
i
==
len
(
masterList
):
i
=
0
random
.
shuffle
(
masterList
)
x
=
filePathToArray
(
basePath
+
'
/rgb/
'
+
masterList
[
i
][
0
],
height
,
width
)
yClassLabels
=
np
.
zeros
((
height
,
width
,
1
))
# 1 class confidence value per model
modelMask
=
filePathToArray
(
basePath
+
'
/mask/
'
+
masterList
[
i
][
1
],
height
,
width
)
if
augmentation
:
if
random
.
choice
([
True
,
False
]):
# vertical flip
x
=
np
.
flipud
(
x
)
modelMask
=
np
.
flipud
(
modelMask
)
if
random
.
choice
([
True
,
False
]):
# horizontal flip
x
=
np
.
fliplr
(
x
)
modelMask
=
np
.
fliplr
(
modelMask
)
modelCoords
=
np
.
where
(
modelMask
==
255
)[:
2
]
for
modelCoord
in
zip
(
modelCoords
[
0
][::
3
],
modelCoords
[
1
][::
3
]):
yClassLabels
[
modelCoord
[
0
]][
modelCoord
[
1
]][
0
]
=
1
xBatch
.
append
(
x
)
yClassBatch
.
append
(
yClassLabels
)
i
+=
1
# print(np.array(yClassBatch).shape)
yield
np
.
array
(
xBatch
),
np
.
array
(
yClassBatch
)
def
coordsTrainingGenerator
(
model
,
batchSize
,
masterList
=
None
,
height
=
480
,
width
=
640
,
augmentation
=
True
,
altLabels
=
True
):
# takes input image and generates unit vector training data
print
(
f
"
--------
{
batchSize
}
----------
"
)
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
model
if
masterList
==
None
:
masterList
=
getMasterList
(
basePath
)
random
.
shuffle
(
masterList
)
i
=
0
while
True
:
xBatch
=
[]
yCoordBatch
=
[]
for
b
in
range
(
batchSize
):
if
i
==
len
(
masterList
):
i
=
0
random
.
shuffle
(
masterList
)
x
=
filePathToArray
(
basePath
+
'
/rgb/
'
+
masterList
[
i
][
0
],
height
,
width
)
with
open
(
basePath
+
(
'
/altLabels/
'
if
altLabels
else
'
/labels/
'
)
+
masterList
[
i
][
2
])
as
f
:
labels
=
f
.
readline
().
split
(
'
'
)[
1
:
19
]
yCoordsLabels
=
np
.
zeros
((
height
,
width
,
18
))
# 9 coordinates
modelMask
=
filePathToArray
(
basePath
+
'
/mask/
'
+
masterList
[
i
][
1
],
height
,
width
)
if
augmentation
:
if
random
.
choice
([
True
,
False
]):
# vertical flip
x
=
np
.
flipud
(
x
)
modelMask
=
np
.
flipud
(
modelMask
)
for
i
in
range
(
len
(
labels
)
//
2
):
labels
[
i
*
2
+
1
]
=
str
(
round
(
1
-
float
(
labels
[
i
*
2
+
1
]),
6
))
if
random
.
choice
([
True
,
False
]):
# horizontal flip
x
=
np
.
fliplr
(
x
)
modelMask
=
np
.
fliplr
(
modelMask
)
for
i
in
range
(
len
(
labels
)
//
2
):
labels
[
i
*
2
]
=
str
(
round
(
1
-
float
(
labels
[
i
*
2
]),
6
))
modelCoords
=
np
.
where
(
modelMask
==
255
)[:
2
]
for
modelCoord
in
zip
(
modelCoords
[
0
][::
3
],
modelCoords
[
1
][::
3
]):
setTrainingPixel
(
yCoordsLabels
,
modelCoord
[
0
],
modelCoord
[
1
],
labels
,
height
,
width
)
xBatch
.
append
(
x
)
yCoordBatch
.
append
(
yCoordsLabels
)
i
+=
1
yield
np
.
array
(
xBatch
),
np
.
array
(
yCoordBatch
)
def
combinedTrainingGenerator
(
model
,
batchSize
,
masterList
=
None
,
height
=
480
,
width
=
640
,
out0
=
'
activation_9
'
,
out1
=
'
activation_10
'
,
augmentation
=
True
,
altLabels
=
True
):
# take input image, resize and store as rgb, create training data
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
model
if
masterList
is
None
:
masterList
=
getMasterList
(
basePath
)
i
=
0
while
True
:
xBatch
=
[]
yCoordBatch
=
[]
yClassBatch
=
[]
for
b
in
range
(
batchSize
):
if
i
==
len
(
masterList
):
i
=
0
random
.
shuffle
(
masterList
)
x
=
filePathToArray
(
basePath
+
'
/rgb/
'
+
masterList
[
i
][
0
],
height
,
width
)
with
open
(
basePath
+
(
'
/altLabels/
'
if
altLabels
else
'
/labels/
'
)
+
masterList
[
i
][
2
])
as
f
:
labels
=
f
.
readline
().
split
(
'
'
)[
1
:
19
]
yCoordsLabels
=
np
.
zeros
((
height
,
width
,
18
))
# 9 coordinates
yClassLabels
=
np
.
zeros
((
height
,
width
,
1
))
# 1 class confidence value per model
# yClassLabels = np.tile(np.array([1, 0]),(height, width, 1))
modelMask
=
filePathToArray
(
basePath
+
'
/mask/
'
+
masterList
[
i
][
1
],
height
,
width
)
if
augmentation
:
# for data aug, get random horizontal, vertical flips, flip input x with np, label vals = 1 - labelvals, flip mask
if
random
.
choice
([
True
,
False
]):
# vertical flip
x
=
np
.
flipud
(
x
)
modelMask
=
np
.
flipud
(
modelMask
)
for
i
in
range
(
len
(
labels
)
//
2
):
labels
[
i
*
2
+
1
]
=
str
(
round
(
1
-
float
(
labels
[
i
*
2
+
1
]),
6
))
if
random
.
choice
([
True
,
False
]):
# horizontal flip
x
=
np
.
fliplr
(
x
)
modelMask
=
np
.
fliplr
(
modelMask
)
for
i
in
range
(
len
(
labels
)
//
2
):
labels
[
i
*
2
]
=
str
(
round
(
1
-
float
(
labels
[
i
*
2
]),
6
))
modelCoords
=
np
.
where
(
modelMask
==
255
)[:
2
]
for
modelCoord
in
zip
(
modelCoords
[
0
][::
3
],
modelCoords
[
1
][::
3
]):
setTrainingPixel
(
yCoordsLabels
,
modelCoord
[
0
],
modelCoord
[
1
],
labels
,
height
,
width
)
yClassLabels
[
modelCoord
[
0
]][
modelCoord
[
1
]][
0
]
=
1
xBatch
.
append
(
x
)
yCoordBatch
.
append
(
yCoordsLabels
)
yClassBatch
.
append
(
yClassLabels
)
i
+=
1
yield
np
.
array
(
xBatch
),
{
out0
:
np
.
array
(
yCoordBatch
),
out1
:
np
.
array
(
yClassBatch
)}
def
filePathToArray
(
filePath
,
height
=
480
,
width
=
640
):
# uses PIL Image object to return image as numpy array
image
=
Image
.
open
(
filePath
)
image
=
image
.
resize
((
width
,
height
))
return
np
.
array
(
image
)
def
showArrayAsImage
(
inArray
,
scaler
=
255
,
mode
=
'
F
'
,
saveImage
=
False
):
# displays image using PIL Image object
displayImage
=
inArray
*
scaler
displayImage
=
Image
.
fromarray
(
np
.
squeeze
(
displayImage
),
mode
)
displayImage
.
show
()
if
saveImage
:
displayImage
=
displayImage
.
convert
(
"
L
"
)
displayImage
.
save
(
"
maskOutput.png
"
,
"
png
"
)
def
setTrainingPixel
(
outImage
,
y
,
x
,
labels
,
height
,
width
):
# for each pixel given, calculate unit vectors to keypoints and store on pixel in outImage object
for
i
in
range
(
9
):
yDiff
=
height
*
float
(
labels
[
i
*
2
+
1
])
-
y
# positive means y is above target in image
xDiff
=
width
*
float
(
labels
[
i
*
2
])
-
x
# positive means x is left of target in image
mag
=
math
.
sqrt
(
yDiff
**
2
+
xDiff
**
2
)
outImage
[
y
][
x
][
i
*
2
+
1
]
=
yDiff
/
mag
# assign unit vectors pointing from coordinate to keypoint
outImage
[
y
][
x
][
i
*
2
]
=
xDiff
/
mag
def
showKeypoints
(
model
=
'
cat
'
,
batchSize
=
2
,
height
=
480
,
width
=
640
):
# display labelled keypoints on image
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
model
masterList
=
getMasterList
(
basePath
)
i
=
0
for
b
in
range
(
batchSize
):
if
i
==
len
(
masterList
):
i
=
0
random
.
shuffle
(
masterList
)
print
(
masterList
[
i
][
0
])
x
=
filePathToArray
(
basePath
+
'
/rgb/
'
+
masterList
[
i
][
0
],
height
,
width
)
with
open
(
basePath
+
'
/labels/
'
+
masterList
[
i
][
2
])
as
f
:
labels
=
f
.
readline
().
split
(
'
'
)[
1
:
19
]
yCoordsLabels
=
np
.
zeros
((
height
,
width
,
18
))
# 9 coordinates
for
ind
in
range
(
len
(
labels
)
//
2
):
px
=
round
(
float
(
labels
[
ind
*
2
])
*
width
)
py
=
round
(
float
(
labels
[
ind
*
2
+
1
])
*
height
)
print
(
"
keypoint at
"
+
str
((
px
,
py
)))
temp
=
np
.
array
(
x
[
py
][
px
])
x
[
py
][
px
]
=
np
.
array
([
0
,
0
,
0
])
plt
.
figure
()
imshow
(
np
.
squeeze
(
x
))
plt
.
show
()
x
[
py
][
px
]
=
temp
i
+=
1
def
labelFloatsToPixels
(
floatList
,
height
=
480
,
width
=
640
,
decPlace
=
0
):
# takes normalized pixel labels, converts to integer coordinates
labelList
=
[]
for
ind
in
range
(
len
(
floatList
)
//
2
):
labelList
.
append
([
round
(
float
(
floatList
[
ind
*
2
])
*
width
,
decPlace
),
round
(
float
(
floatList
[
ind
*
2
+
1
])
*
height
,
decPlace
)])
# x, y format
return
labelList
def
getDataSplit
(
genNew
=
False
,
split
=
.
8
,
modelClass
=
'
cat
'
):
# access training data, get jpeg, mask, label filenames split into training / validation sets
if
genNew
:
# create split
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
modelClass
masterList
=
getMasterList
(
basePath
)
random
.
shuffle
(
masterList
)
splitPoint
=
round
(
len
(
masterList
)
*
split
)
splitDict
=
{
"
trainData
"
:
masterList
[:
splitPoint
],
"
validData
"
:
masterList
[
splitPoint
:]}
with
open
(
"
{0}_trainSplit
"
.
format
(
modelClass
),
'
wb
'
)
as
f
:
pickle
.
dump
(
splitDict
,
f
)
else
:
# load saved split
with
open
(
"
{0}_trainSplit
"
.
format
(
modelClass
),
'
rb
'
)
as
f
:
splitDict
=
pickle
.
load
(
f
)
return
splitDict
[
"
trainData
"
],
splitDict
[
"
validData
"
]
def
genAltLabels
(
p3dOld
,
p3dNew
,
matrix
=
np
.
array
([[
572.4114
,
0.
,
325.2611
],
[
0.
,
573.57043
,
242.04899
],
[
0.
,
0.
,
1.
]]),
method
=
cv2
.
SOLVEPNP_ITERATIVE
,
modelClass
=
'
cat
'
,
height
=
480
,
width
=
640
,
showPoint
=
False
):
# generate pixel labels for p3dNew using labels for p3dOld
p3dOld
=
np
.
ascontiguousarray
(
p3dOld
.
astype
(
np
.
float64
))
p3dOld
=
np
.
append
([[
0
,
0
,
0
]],
p3dOld
,
0
)
labelDict
=
{
'
ape
'
:
0
,
'
benchvise
'
:
1
,
'
cam
'
:
2
,
'
can
'
:
3
,
'
cat
'
:
4
,
'
driller
'
:
5
,
'
duck
'
:
6
,
'
eggbox
'
:
7
,
'
glue
'
:
8
,
'
holepuncher
'
:
9
,
'
iron
'
:
10
,
'
lamp
'
:
11
,
'
phone
'
:
12
}
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
modelClass
masterList
=
getMasterList
(
basePath
)
labelPath
=
basePath
+
'
/labels/
'
newLabelPath
=
basePath
+
'
/altLabels/
'
for
el
in
masterList
:
with
open
(
labelPath
+
el
[
2
],
'
r
'
)
as
f
:
labels
=
f
.
readline
().
split
(
'
'
)[
1
:
19
]
# ignore class label and centroid
labels
=
[
float
(
el
)
for
el
in
labels
]
labels
=
np
.
reshape
(
labels
,
(
p3dOld
.
shape
[
0
],
2
))
labels
=
np
.
array
([[
el
[
0
]
*
width
,
el
[
1
]
*
height
]
for
el
in
labels
])
p2d
=
np
.
ascontiguousarray
(
labels
.
astype
(
np
.
float64
))
_
,
R_exp
,
tVec
=
cv2
.
solvePnP
(
p3dOld
,
p2d
,
matrix
,
np
.
zeros
(
shape
=
[
8
,
1
],
dtype
=
'
float64
'
),
flags
=
method
)
(
plotPoints
,
jacobian
)
=
cv2
.
projectPoints
(
p3dNew
,
R_exp
,
tVec
,
matrix
,
np
.
zeros
(
shape
=
[
8
,
1
],
dtype
=
'
float64
'
))
print
(
plotPoints
)
image
=
filePathToArray
(
basePath
+
'
/rgb/
'
+
el
[
0
])
# print("looking at {0}".format(el[0]))
newLabels
=
[
labelDict
[
modelClass
]]
for
coord
in
plotPoints
:
if
showPoint
:
px
=
int
(
round
(
coord
[
0
][
0
]))
py
=
int
(
round
(
coord
[
0
][
1
]))
print
(
"
keypoint at
"
+
str
((
px
,
py
)))
temp
=
np
.
array
(
image
[
py
][
px
])
image
[
py
][
px
]
=
np
.
array
([
0
,
0
,
0
])
plt
.
figure
()
imshow
(
np
.
squeeze
(
image
))
plt
.
show
()
image
[
py
][
px
]
=
temp
newLabels
.
append
(
coord
[
0
][
0
]
/
width
)
newLabels
.
append
(
coord
[
0
][
1
]
/
height
)
with
open
(
newLabelPath
+
el
[
2
],
'
w
'
)
as
f
:
for
lab
in
newLabels
:
f
.
write
(
str
(
lab
)
+
'
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment