Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
Pvnet_FruitBIn
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Guillaume Duret
Pvnet_FruitBIn
Commits
c8f52100
Commit
c8f52100
authored
2 years ago
by
maali
Browse files
Options
Downloads
Patches
Plain Diff
Add predict_pose script
parent
3e3382b7
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
predict_pose.py
+170
-0
170 additions, 0 deletions
predict_pose.py
with
170 additions
and
0 deletions
predict_pose.py
0 → 100644
+
170
−
0
View file @
c8f52100
import
sys
import
tensorflow
as
tf
import
numpy
as
np
import
random
import
math
import
statistics
import
os
import
data
import
models
import
cv2
from
scipy.spatial.transform
import
Rotation
as
R
import
argparse
def
dictToArray
(
hypDict
):
# take dictionary keypoints and return list object
coordArray
=
np
.
zeros
((
len
(
hypDict
.
keys
()),
2
))
for
key
,
hyps
in
hypDict
.
items
():
coordArray
[
key
]
=
np
.
array
([
round
(
hyps
[
1
]),
round
(
hyps
[
0
])])
# x, y format
return
coordArray
def
ransacVal
(
y1
,
x1
,
v2
):
# dot product of unit vectors to find cos(theta difference)
v2
=
v2
/
np
.
linalg
.
norm
(
v2
)
return
y1
*
v2
[
1
]
+
x1
*
v2
[
0
]
def
determineOutlier
(
input
,
yMean
,
yDev
,
xMean
,
xDev
):
return
abs
(
input
[
0
]
-
yMean
)
>
yDev
or
abs
(
input
[
1
]
-
xMean
)
>
xDev
def
pruneHypsStdDev
(
hypDict
,
m
=
2
):
# prune generated hypotheses using mean and stdDev
for
key
,
hyps
in
hypDict
.
items
():
yVals
,
xVals
=
[
x
[
0
][
0
]
for
x
in
hyps
],
[
x
[
0
][
1
]
for
x
in
hyps
]
yMean
,
xMean
=
statistics
.
mean
(
yVals
),
statistics
.
mean
(
xVals
)
yDev
,
xDev
=
statistics
.
pstdev
(
yVals
)
*
m
,
statistics
.
pstdev
(
xVals
)
*
m
hypDict
[
key
]
=
[
x
for
x
in
hyps
if
not
determineOutlier
(
x
[
0
],
yMean
,
yDev
,
xMean
,
xDev
)]
def
getMean
(
hypDict
):
# get weighted average of coordinates
meanDict
=
{}
for
key
,
hyps
in
hypDict
.
items
():
xMean
=
0
yMean
=
0
totalWeight
=
0
for
hyp
in
hyps
:
yMean
+=
hyp
[
0
][
0
]
*
hyp
[
1
]
xMean
+=
hyp
[
0
][
1
]
*
hyp
[
1
]
totalWeight
+=
hyp
[
1
]
yMean
/=
totalWeight
xMean
/=
totalWeight
meanDict
[
key
]
=
[
yMean
,
xMean
]
return
meanDict
def
predict_pose
(
class_name
,
image
,
fps_points
):
nnInput
=
np
.
array
([
image
])
# loading our model to predict unit vectors per pixel per keypoint on image
vecModel
=
models
.
stvNetNew
(
outVectors
=
True
,
outClasses
=
False
)
vecModel
.
load_weights
(
f
'
models/stvNet_new_coords_
{
class_name
}
'
)
# loading weights for standard labels model
vecModel
.
compile
(
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(),
loss
=
tf
.
keras
.
losses
.
Huber
())
# loading our class model for image segmentation
classModel
=
models
.
uNet
(
outVectors
=
False
,
outClasses
=
True
)
classModel
.
load_weights
(
f
'
models/uNet_classes_
{
class_name
}
'
)
classModel
.
compile
(
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(),
loss
=
tf
.
keras
.
losses
.
BinaryCrossentropy
())
vecPred
=
vecModel
.
predict
(
nnInput
)[
0
]
classPred
=
classModel
.
predict
(
nnInput
)[
0
]
# print("Vector Prediction shape: " + str(vecPred.shape))
# print("Class Prediction shape: " + str(classPred.shape))
# showImage(classPred) # let's see our class prediction output
# ====================
population
=
np
.
where
(
classPred
>
.
9
)[:
2
]
# .9
population
=
list
(
zip
(
population
[
0
],
population
[
1
]))
# print(len(population)) # the number of class pixels found
# ====================
hypDict
=
{
0
:
[],
1
:
[],
2
:
[],
3
:
[],
4
:
[],
5
:
[],
6
:
[],
7
:
[],
8
:
[]}
for
n
in
range
(
50
):
# take two pixels, find intersection of unit vectors
# print(n)
p1
=
population
.
pop
(
random
.
randrange
(
len
(
population
)))
v1
=
vecPred
[
p1
[
0
]][
p1
[
1
]]
p2
=
population
.
pop
(
random
.
randrange
(
len
(
population
)))
v2
=
vecPred
[
p2
[
0
]][
p2
[
1
]]
# print(p1, p2)
# print(v1, v2)
for
i
in
range
(
9
):
# find lines intersection, use as hypothesis
m1
=
v1
[
i
*
2
+
1
]
/
v1
[
i
*
2
]
m2
=
v2
[
i
*
2
+
1
]
/
v2
[
i
*
2
]
b1
=
p1
[
0
]
-
p1
[
1
]
*
m1
b2
=
p2
[
0
]
-
p2
[
1
]
*
m2
x
=
(
b2
-
b1
)
/
(
m1
-
m2
)
y
=
m1
*
x
+
b1
if
(
y
>=
p1
[
0
]
!=
v1
[
i
*
2
+
1
]
<
0
or
x
>=
p1
[
1
]
!=
v1
[
i
*
2
]
<
0
or
y
>=
p2
[
0
]
!=
v2
[
i
*
2
+
1
]
<
0
or
x
>=
p2
[
1
]
!=
v2
[
i
*
2
]
<
0
)
or
not
(
m1
-
m2
):
# check if line intersection takes place according to unit vector directions
continue
# print(y, x)
weight
=
0
for
voter
in
population
:
# voting for fit of hypothesis
yDiff
=
y
-
voter
[
0
]
xDiff
=
x
-
voter
[
1
]
mag
=
math
.
sqrt
(
yDiff
**
2
+
xDiff
**
2
)
vec
=
vecPred
[
voter
[
0
]][
voter
[
1
]][
i
*
2
:
i
*
2
+
2
]
if
ransacVal
(
yDiff
/
mag
,
xDiff
/
mag
,
vec
)
>
.
99
:
weight
+=
1
hypDict
[
i
].
append
(((
y
,
x
),
weight
))
population
.
append
(
p1
)
population
.
append
(
p2
)
# print("--------------------")
# print("Coordinate hypotheses and weights: " + str(hypDict[0]))
# print("# Coordinate hypotheses and weights: " + str(len(hypDict[0])))
# ================
pruneHypsStdDev
(
hypDict
)
# print("# Coordinate hypotheses and weights: " + str(len(hypDict[0])))
# ==========================
meanDict
=
getMean
(
hypDict
)
# print(meanDict)
# =============================
preds
=
dictToArray
(
meanDict
)[:
8
]
matrix
=
np
.
array
(
[[
543.25272224
,
0.
,
320.25
],
[
0.
,
724.33696299
,
240.33333333
],
[
0.
,
0.
,
1.
]])
# camera matrix GUIMOD
_
,
rVec
,
tVec
=
cv2
.
solvePnP
(
fps_points
,
preds
,
matrix
,
np
.
zeros
(
shape
=
[
8
,
1
],
dtype
=
'
float64
'
),
flags
=
cv2
.
SOLVEPNP_ITERATIVE
)
return
rVec
,
tVec
if
__name__
==
'
__main__
'
:
ap
=
argparse
.
ArgumentParser
()
ap
.
add_argument
(
"
-cls_name
"
,
"
--class_name
"
,
type
=
str
,
default
=
'
kiwi1
'
,
help
=
"
[kiwi1, pear2, banana1, orange, peach1]
"
)
args
=
vars
(
ap
.
parse_args
())
class_name
=
args
[
"
class_name
"
]
# class_name = 'pear'
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/Generated_Worlds_/Generated_Worlds_Evaluating/
'
+
class_name
fps
=
np
.
loadtxt
(
f
'
Generated_Worlds_/Generated/
{
class_name
}
/
{
class_name
}
_fps_3d.txt
'
)
images_ls
,
labels_ls
,
mask_ls
,
choice_ls
=
data
.
getAllValData
(
class_name
)
print
(
len
(
images_ls
))
for
i
,
img
in
enumerate
(
images_ls
):
img_id
=
choice_ls
[
i
].
split
(
'
.png
'
)
img_id
=
int
(
img_id
[
0
])
r_pre
,
t_pre
=
predict_pose
(
class_name
,
img
,
fps
)
r
=
R
.
from_rotvec
(
r_pre
.
reshape
(
3
,
))
r_pre_mx
=
np
.
array
(
r
.
as_matrix
())
res
=
np
.
zeros
((
3
,
4
))
res
[:
3
,
:
3
]
=
r_pre_mx
res
[:
3
,
3
]
=
t_pre
np
.
save
(
f
'
{
basePath
}
/Pose_prediction/
{
class_name
}
/
{
img_id
}
.npy
'
,
res
)
# save
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment