Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
Pvnet_FruitBIn
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Guillaume Duret
Pvnet_FruitBIn
Commits
f5db9351
Commit
f5db9351
authored
2 years ago
by
Mahmoud Ahmed Ali
Browse files
Options
Downloads
Patches
Plain Diff
Add models file
parent
2c70f606
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
models.py
+650
-0
650 additions, 0 deletions
models.py
with
650 additions
and
0 deletions
models.py
0 → 100644
+
650
−
0
View file @
f5db9351
import
tensorflow
as
tf
,
numpy
as
np
,
data
,
os
,
math
,
pickle
,
sys
,
matplotlib
.
pyplot
as
plt
from
pdb
import
set_trace
from
datetime
import
datetime
from
tensorflow.keras
import
backend
as
K
from
classes
import
modelSet
,
modelDictVal
import
random
from
data
import
*
huberDelta
=
.
5
def
smoothL1
(
y_true
,
y_pred
):
# custom loss function for unit vector output
x
=
tf
.
keras
.
backend
.
abs
(
y_true
-
y_pred
)
x
=
tf
.
where
(
x
<
huberDelta
,
0.5
*
x
**
2
,
huberDelta
*
(
x
-
0.5
*
huberDelta
))
return
tf
.
keras
.
backend
.
sum
(
x
)
def
coordsOutPut
(
x
):
# add coordinate output layer
coords
=
tf
.
keras
.
layers
.
Conv2D
(
18
,
(
1
,
1
),
name
=
'
coordsOut
'
,
kernel_initializer
=
tf
.
keras
.
initializers
.
GlorotUniform
(
seed
=
0
),
padding
=
'
same
'
)(
x
)
# coords = tf.keras.layers.BatchNormalization(name = 'batchCoords')(coords)
# coords = tf.keras.layers.Activation('relu')(coords)
return
coords
def
classOutput
(
x
):
# add class output layer
classPred
=
tf
.
keras
.
layers
.
Conv2D
(
1
,
(
1
,
1
),
name
=
'
classConv
'
,
kernel_initializer
=
tf
.
keras
.
initializers
.
GlorotUniform
(
seed
=
0
),
padding
=
'
same
'
)(
x
)
classPred
=
tf
.
keras
.
layers
.
BatchNormalization
(
name
=
'
classBatch
'
)(
classPred
)
classPred
=
tf
.
keras
.
layers
.
Activation
(
'
relu
'
,
name
=
"
classOut
"
)(
classPred
)
return
classPred
def
convLayer
(
x
,
numFilters
,
kernelSize
,
strides
=
1
,
dilation
=
1
):
x
=
tf
.
keras
.
layers
.
Conv2D
(
numFilters
,
kernelSize
,
strides
=
strides
,
kernel_initializer
=
tf
.
keras
.
initializers
.
GlorotUniform
(
seed
=
0
),
padding
=
'
same
'
,
dilation_rate
=
dilation
)(
x
)
x
=
tf
.
keras
.
layers
.
BatchNormalization
()(
x
)
x
=
tf
.
keras
.
layers
.
Activation
(
'
relu
'
)(
x
)
return
x
def
stvNet
(
inputShape
=
(
480
,
640
,
3
),
outVectors
=
True
,
outClasses
=
True
,
modelName
=
"
stvNet
"
):
xIn
=
tf
.
keras
.
Input
(
inputShape
,
dtype
=
np
.
dtype
(
'
uint8
'
))
x
=
tf
.
keras
.
layers
.
Lambda
(
lambda
x
:
x
/
255
)(
xIn
)
x
=
tf
.
keras
.
layers
.
Conv2D
(
64
,
7
,
input_shape
=
inputShape
,
kernel_initializer
=
tf
.
keras
.
initializers
.
GlorotUniform
(
seed
=
0
),
padding
=
'
same
'
)(
x
)
x
=
tf
.
keras
.
layers
.
BatchNormalization
()(
x
)
x
=
tf
.
keras
.
layers
.
Activation
(
'
relu
'
)(
x
)
res1
=
x
x
=
tf
.
keras
.
layers
.
MaxPool2D
(
pool_size
=
3
,
strides
=
2
,
padding
=
'
same
'
)(
x
)
skip
=
x
x
=
convLayer
(
x
,
64
,
3
)
x
=
convLayer
(
x
,
64
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
x
x
=
convLayer
(
x
,
64
,
3
)
x
=
convLayer
(
x
,
64
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
tf
.
keras
.
layers
.
MaxPool2D
(
pool_size
=
2
,
padding
=
'
same
'
)(
x
)
skip
=
tf
.
pad
(
skip
,
[[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
32
,
32
]])
# linear projection
res2
=
x
x
=
convLayer
(
x
,
128
,
3
,
2
)
x
=
convLayer
(
x
,
128
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
x
x
=
convLayer
(
x
,
128
,
3
)
x
=
convLayer
(
x
,
128
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
tf
.
keras
.
layers
.
MaxPool2D
(
pool_size
=
2
,
padding
=
'
same
'
)(
x
)
skip
=
tf
.
pad
(
skip
,
[[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
64
,
64
]])
# linear projection
res3
=
x
x
=
convLayer
(
x
,
256
,
3
,
2
)
x
=
convLayer
(
x
,
256
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
x
x
=
convLayer
(
x
,
256
,
3
)
x
=
convLayer
(
x
,
256
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
tf
.
pad
(
x
,
[[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
128
,
128
]])
res4
=
x
x
=
convLayer
(
x
,
512
,
3
,
dilation
=
2
)
x
=
convLayer
(
x
,
512
,
3
,
dilation
=
2
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
x
x
=
convLayer
(
x
,
512
,
3
,
dilation
=
2
)
x
=
convLayer
(
x
,
512
,
3
,
dilation
=
2
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
x
=
convLayer
(
x
,
256
,
3
)
x
=
convLayer
(
x
,
256
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
res4
])
x
=
tf
.
keras
.
layers
.
UpSampling2D
()(
x
)
x
=
convLayer
(
x
,
128
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
res3
])
x
=
tf
.
keras
.
layers
.
UpSampling2D
()(
x
)
x
=
convLayer
(
x
,
64
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
res2
])
x
=
tf
.
keras
.
layers
.
UpSampling2D
()(
x
)
x
=
convLayer
(
x
,
32
,
3
)
outputs
=
[]
if
outVectors
:
outputs
.
append
(
coordsOutPut
(
x
))
if
outClasses
:
outputs
.
append
(
classOutput
(
x
))
return
tf
.
keras
.
Model
(
inputs
=
xIn
,
outputs
=
outputs
,
name
=
modelName
)
def
stvNetNew
(
inputShape
=
(
480
,
640
,
3
),
outVectors
=
True
,
outClasses
=
True
,
modelName
=
"
stvNetNew
"
):
xIn
=
tf
.
keras
.
Input
(
inputShape
,
dtype
=
np
.
dtype
(
'
uint8
'
))
x
=
tf
.
keras
.
layers
.
Lambda
(
lambda
x
:
x
/
255
)(
xIn
)
x
=
tf
.
keras
.
layers
.
Conv2D
(
64
,
7
,
input_shape
=
inputShape
,
kernel_initializer
=
tf
.
keras
.
initializers
.
GlorotUniform
(
seed
=
0
),
padding
=
'
same
'
)(
x
)
x
=
tf
.
keras
.
layers
.
BatchNormalization
()(
x
)
x
=
tf
.
keras
.
layers
.
Activation
(
'
relu
'
)(
x
)
res1
=
x
x
=
tf
.
keras
.
layers
.
MaxPool2D
(
pool_size
=
3
,
strides
=
2
,
padding
=
'
same
'
)(
x
)
skip
=
x
x
=
convLayer
(
x
,
64
,
3
)
x
=
convLayer
(
x
,
64
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
x
x
=
convLayer
(
x
,
64
,
3
)
x
=
convLayer
(
x
,
64
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
tf
.
keras
.
layers
.
MaxPool2D
(
pool_size
=
2
,
padding
=
'
same
'
)(
x
)
skip
=
tf
.
pad
(
skip
,
[[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
32
,
32
]])
# linear projection
res2
=
x
x
=
convLayer
(
x
,
128
,
3
,
2
)
x
=
convLayer
(
x
,
128
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
x
x
=
convLayer
(
x
,
128
,
3
)
x
=
convLayer
(
x
,
128
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
tf
.
keras
.
layers
.
MaxPool2D
(
pool_size
=
2
,
padding
=
'
same
'
)(
x
)
skip
=
tf
.
pad
(
skip
,
[[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
64
,
64
]])
# linear projection
res3
=
x
x
=
convLayer
(
x
,
256
,
3
,
2
)
x
=
convLayer
(
x
,
256
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
x
x
=
convLayer
(
x
,
256
,
3
)
x
=
convLayer
(
x
,
256
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
tf
.
pad
(
x
,
[[
0
,
0
],
[
0
,
0
],
[
0
,
0
],
[
128
,
128
]])
res4
=
x
x
=
convLayer
(
x
,
512
,
3
,
dilation
=
2
)
x
=
convLayer
(
x
,
512
,
3
,
dilation
=
2
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
skip
=
x
x
=
convLayer
(
x
,
512
,
3
,
dilation
=
2
)
x
=
convLayer
(
x
,
512
,
3
,
dilation
=
2
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
skip
])
x
=
convLayer
(
x
,
256
,
3
)
x
=
convLayer
(
x
,
256
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
res4
])
x
=
tf
.
keras
.
layers
.
UpSampling2D
()(
x
)
x
=
convLayer
(
x
,
128
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
res3
])
x
=
tf
.
keras
.
layers
.
UpSampling2D
()(
x
)
x
=
convLayer
(
x
,
64
,
3
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
res2
])
x
=
tf
.
keras
.
layers
.
UpSampling2D
()(
x
)
x
=
tf
.
keras
.
layers
.
Add
()([
x
,
res1
])
x
=
convLayer
(
x
,
32
,
3
)
outputs
=
[]
if
outVectors
:
outputs
.
append
(
coordsOutPut
(
x
))
if
outClasses
:
outputs
.
append
(
classOutput
(
x
))
return
tf
.
keras
.
Model
(
inputs
=
xIn
,
outputs
=
outputs
,
name
=
modelName
)
def
uNet
(
inputShape
=
(
480
,
640
,
3
),
outVectors
=
True
,
outClasses
=
True
,
modelName
=
"
uNet
"
):
# neural net structure used for image segmentation
xIn
=
tf
.
keras
.
Input
(
inputShape
,
dtype
=
np
.
dtype
(
'
uint8
'
))
x
=
tf
.
keras
.
layers
.
Lambda
(
lambda
x
:
x
/
255
)(
xIn
)
c1
=
tf
.
keras
.
layers
.
Conv2D
(
16
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
x
)
c1
=
tf
.
keras
.
layers
.
Dropout
(
0.1
)(
c1
)
c1
=
tf
.
keras
.
layers
.
Conv2D
(
16
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
c1
)
p1
=
tf
.
keras
.
layers
.
MaxPool2D
((
2
,
2
))(
c1
)
c2
=
tf
.
keras
.
layers
.
Conv2D
(
32
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
p1
)
c2
=
tf
.
keras
.
layers
.
Dropout
(
0.1
)(
c2
)
c2
=
tf
.
keras
.
layers
.
Conv2D
(
32
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
c2
)
p2
=
tf
.
keras
.
layers
.
MaxPool2D
((
2
,
2
))(
c2
)
c3
=
tf
.
keras
.
layers
.
Conv2D
(
64
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
p2
)
c3
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
c3
)
c3
=
tf
.
keras
.
layers
.
Conv2D
(
64
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
c3
)
p3
=
tf
.
keras
.
layers
.
MaxPool2D
((
2
,
2
))(
c3
)
c4
=
tf
.
keras
.
layers
.
Conv2D
(
128
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
p3
)
c4
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
c4
)
c4
=
tf
.
keras
.
layers
.
Conv2D
(
128
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
c4
)
p4
=
tf
.
keras
.
layers
.
MaxPool2D
(
pool_size
=
(
2
,
2
))(
c4
)
c5
=
tf
.
keras
.
layers
.
Conv2D
(
256
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
p4
)
c5
=
tf
.
keras
.
layers
.
Dropout
(
0.3
)(
c5
)
c5
=
tf
.
keras
.
layers
.
Conv2D
(
256
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
c5
)
u6
=
tf
.
keras
.
layers
.
Conv2DTranspose
(
128
,
(
2
,
2
),
strides
=
(
2
,
2
),
padding
=
'
same
'
)(
c5
)
u6
=
tf
.
keras
.
layers
.
concatenate
([
u6
,
c4
])
c6
=
tf
.
keras
.
layers
.
Conv2D
(
128
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
u6
)
c6
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
c6
)
c6
=
tf
.
keras
.
layers
.
Conv2D
(
128
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
c6
)
u7
=
tf
.
keras
.
layers
.
Conv2DTranspose
(
64
,
(
2
,
2
),
strides
=
(
2
,
2
),
padding
=
'
same
'
)(
c6
)
u7
=
tf
.
keras
.
layers
.
concatenate
([
u7
,
c3
])
c7
=
tf
.
keras
.
layers
.
Conv2D
(
64
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
u7
)
c7
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
c7
)
c7
=
tf
.
keras
.
layers
.
Conv2D
(
64
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
c7
)
u8
=
tf
.
keras
.
layers
.
Conv2DTranspose
(
32
,
(
2
,
2
),
strides
=
(
2
,
2
),
padding
=
'
same
'
)(
c7
)
u8
=
tf
.
keras
.
layers
.
concatenate
([
u8
,
c2
])
c8
=
tf
.
keras
.
layers
.
Conv2D
(
32
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
u8
)
c8
=
tf
.
keras
.
layers
.
Dropout
(
0.1
)(
c8
)
c8
=
tf
.
keras
.
layers
.
Conv2D
(
32
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
c8
)
u9
=
tf
.
keras
.
layers
.
Conv2DTranspose
(
16
,
(
2
,
2
),
strides
=
(
2
,
2
),
padding
=
'
same
'
)(
c8
)
u9
=
tf
.
keras
.
layers
.
concatenate
([
u9
,
c1
],
axis
=
3
)
c9
=
tf
.
keras
.
layers
.
Conv2D
(
16
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
u9
)
c9
=
tf
.
keras
.
layers
.
Dropout
(
0.1
)(
c9
)
c9
=
tf
.
keras
.
layers
.
Conv2D
(
16
,
(
3
,
3
),
activation
=
'
elu
'
,
kernel_initializer
=
'
he_normal
'
,
padding
=
'
same
'
)(
c9
)
outputs
=
[]
if
outVectors
:
# outputs.append(tf.keras.layers.Conv2D(18, (1, 1), activation='sigmoid') (c9))
outputs
.
append
(
tf
.
keras
.
layers
.
Conv2D
(
18
,
(
1
,
1
),
kernel_initializer
=
tf
.
keras
.
initializers
.
GlorotUniform
(
seed
=
0
),
padding
=
'
same
'
)(
c9
))
# outputs.append(coordsOutPut(c9))
if
outClasses
:
outputs
.
append
(
tf
.
keras
.
layers
.
Conv2D
(
1
,
(
1
,
1
),
activation
=
'
sigmoid
'
)(
c9
))
# outputs.append(classOutput(c9))
# outputs.append(tf.keras.layers.Conv2D(1, (1,1), name = 'classConv', kernel_initializer = tf.keras.initializers.GlorotUniform(seed=0), padding = 'same', activation = tf.keras.layers.Activation('relu')) (c9))
return
tf
.
keras
.
Model
(
inputs
=
[
xIn
],
outputs
=
outputs
,
name
=
modelName
)
def
trainModel
(
modelStruct
,
modelGen
,
modelClass
=
'
cat
'
,
batchSize
=
2
,
optimizer
=
tf
.
keras
.
optimizers
.
Adam
,
learning_rate
=
0.01
,
losses
=
None
,
metrics
=
None
,
saveModel
=
True
,
modelName
=
'
stvNet_weights
'
,
epochs
=
1
,
loss_weights
=
None
,
outVectors
=
False
,
outClasses
=
False
,
dataSplit
=
True
,
altLabels
=
True
,
augmentation
=
True
):
# train and save model weights
if
metrics
is
None
:
metrics
=
[
'
accuracy
'
]
if
not
(
outVectors
or
outClasses
):
print
(
"
At least one of outVectors or outClasses must be set to True.
"
)
return
model
=
modelStruct
(
outVectors
=
outVectors
,
outClasses
=
outClasses
,
modelName
=
modelName
)
model
.
summary
()
model
.
compile
(
optimizer
=
optimizer
(
learning_rate
=
learning_rate
),
loss
=
losses
,
metrics
=
metrics
,
loss_weights
=
loss_weights
)
trainData
,
validData
=
None
,
None
if
dataSplit
:
# if using datasplit, otherwise all available data is used
trainData
,
validData
=
data
.
getDataSplit
(
modelClass
=
modelClass
)
logger
=
tf
.
keras
.
callbacks
.
CSVLogger
(
"
models/history/
"
+
modelName
+
"
_
"
+
modelClass
+
"
_history.csv
"
,
append
=
True
)
# evalLogger = tf.keras.callbacks.CSVLogger("models/history/" + modelName + "_" + modelClass + "_eval_history.csv", append = True)
history
,
valHistory
=
[],
[]
if
type
(
losses
)
is
dict
:
outKeys
=
list
(
losses
.
keys
())
if
len
(
outKeys
)
==
2
:
# combined output
for
i
in
range
(
epochs
):
print
(
"
Epoch {0} of {1}
"
.
format
(
i
+
1
,
epochs
))
hist
=
model
.
fit
(
modelGen
(
modelClass
,
batchSize
,
masterList
=
trainData
,
out0
=
outKeys
[
0
],
out1
=
outKeys
[
1
],
altLabels
=
altLabels
,
augmentation
=
augmentation
),
steps_per_epoch
=
math
.
ceil
(
len
(
trainData
)
/
batchSize
),
max_queue_size
=
2
,
callbacks
=
[
logger
])
history
.
append
(
hist
.
history
)
if
dataSplit
:
print
(
"
Validation:
"
)
valHist
=
model
.
evaluate
(
modelGen
(
modelClass
,
batchSize
,
masterList
=
validData
,
out0
=
outKeys
[
0
],
out1
=
outKeys
[
1
],
altLabels
=
altLabels
,
augmentation
=
False
),
steps
=
math
.
ceil
(
len
(
validData
)
/
batchSize
),
max_queue_size
=
2
)
valHistory
.
append
(
valHist
)
else
:
raise
Exception
(
"
Probably shouldn
'
t be here ever..
"
)
else
:
for
i
in
range
(
epochs
):
print
(
"
Epoch {0} of {1}
"
.
format
(
i
+
1
,
epochs
))
hist
=
model
.
fit
(
modelGen
(
modelClass
,
batchSize
,
masterList
=
trainData
,
altLabels
=
altLabels
,
augmentation
=
augmentation
),
steps_per_epoch
=
math
.
ceil
(
len
(
trainData
)
/
batchSize
),
max_queue_size
=
2
,
callbacks
=
[
logger
])
history
.
append
(
hist
.
history
)
if
dataSplit
:
print
(
"
Validation:
"
)
valHist
=
model
.
evaluate
(
modelGen
(
modelClass
,
batchSize
,
masterList
=
validData
,
altLabels
=
altLabels
,
augmentation
=
False
),
steps
=
math
.
ceil
(
len
(
validData
)
/
batchSize
),
max_queue_size
=
2
)
valHistory
.
append
(
valHist
)
historyLog
=
{
"
struct
"
:
modelStruct
.
__name__
,
"
class
"
:
modelClass
,
"
optimizer
"
:
optimizer
,
"
lr
"
:
learning_rate
,
"
losses
"
:
losses
,
"
name
"
:
modelName
,
"
epochs
"
:
epochs
,
"
history
"
:
history
,
"
evalHistory
"
:
valHistory
,
"
timestamp
"
:
datetime
.
now
().
strftime
(
"
%d/%m/%Y %H:%M:%S
"
),
}
if
saveModel
:
model
.
save_weights
(
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/models/
'
+
modelName
+
'
_
'
+
modelClass
)
model
.
save
(
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/models/
'
+
modelName
+
'
_
'
+
modelClass
)
if
not
os
.
path
.
exists
(
"
models/history/
"
+
modelName
+
'
_trainHistory
'
):
with
open
(
"
models/history/
"
+
modelName
+
'
_
'
+
modelClass
+
'
_trainHistory
'
,
'
wb
'
)
as
f
:
# create model history
pickle
.
dump
([],
f
)
with
open
(
"
models/history/
"
+
modelName
+
'
_
'
+
modelClass
+
'
_trainHistory
'
,
'
rb
'
)
as
f
:
# loading old history
histories
=
pickle
.
load
(
f
)
histories
.
append
(
historyLog
)
with
open
(
"
models/history/
"
+
modelName
+
'
_
'
+
modelClass
+
'
_trainHistory
'
,
'
wb
'
)
as
f
:
# saving the history of the model
pickle
.
dump
(
histories
,
f
)
return
model
def
trainModels
(
modelSets
,
shutDown
=
False
):
for
modelSet
in
modelSets
:
print
(
"
Training {0}
"
.
format
(
modelSet
.
name
))
model
=
modelsDict
[
modelSet
.
name
]
trainModel
(
model
.
structure
,
model
.
generator
,
modelClass
=
modelSet
.
modelClass
,
epochs
=
model
.
epochs
,
losses
=
model
.
losses
,
modelName
=
modelSet
.
name
,
outClasses
=
model
.
outClasses
,
outVectors
=
model
.
outVectors
,
learning_rate
=
model
.
lr
,
metrics
=
model
.
metrics
,
altLabels
=
model
.
altLabels
,
augmentation
=
model
.
augmentation
)
K
.
clear_session
()
K
.
reset_uids
()
if
shutDown
:
os
.
system
(
'
shutdown -s
'
)
def
evaluateModel
(
modelStruct
,
modelName
,
evalGen
,
modelClass
=
'
cat
'
,
outVectors
=
False
,
outClasses
=
False
,
batchSize
=
2
,
optimizer
=
tf
.
keras
.
optimizers
.
Adam
,
learning_rate
=
0.01
,
losses
=
None
,
metrics
=
None
,
samples
=
100
):
# test existing model performance
if
metrics
is
None
:
metrics
=
[
'
accuracy
'
]
model
=
tf
.
keras
.
models
.
load_model
(
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/models/
'
+
modelName
+
'
_
'
+
modelClass
)
model
.
evaluate
(
evalGen
(
modelClass
,
batchSize
),
steps
=
samples
//
batchSize
)
def
evaluateModels
(
modelSets
,
batchSize
=
2
,
dataSplit
=
True
):
for
modelSet
in
modelSets
:
validData
=
(
data
.
getDataSplit
(
modelClass
=
modelSet
.
modelClass
)[
1
]
if
dataSplit
else
None
)
modelEnt
=
modelsDict
[
modelSet
.
name
]
model
=
loadModelWeights
(
modelEnt
.
structure
,
modelSet
.
name
,
modelSet
.
modelClass
,
modelEnt
.
outVectors
,
modelEnt
.
outClasses
,
losses
=
modelEnt
.
losses
,
metrics
=
modelEnt
.
metrics
)
if
type
(
model
.
losses
)
is
dict
:
outKeys
=
list
(
model
.
losses
.
keys
())
if
len
(
outKeys
)
==
2
:
# combined output
model
.
evaluate
(
modelEnt
.
generator
(
modelSet
.
modelClass
,
batchSize
=
batchSize
,
masterList
=
validData
,
out0
=
outKeys
[
0
],
out1
=
outKeys
[
1
],
altLabels
=
modelEnt
.
altLabels
,
augmentation
=
False
),
steps
=
math
.
ceil
(
len
(
validData
)
/
batchSize
),
max_queue_size
=
2
)
else
:
raise
Exception
(
"
Probably shouldn
'
t be here ever..
"
)
else
:
model
.
evaluate
(
modelEnt
.
generator
(
modelSet
.
modelClass
,
batchSize
=
batchSize
,
masterList
=
validData
,
altLabels
=
modelEnt
.
altLabels
,
augmentation
=
False
),
steps
=
math
.
ceil
(
len
(
validData
)
/
batchSize
),
max_queue_size
=
2
)
def
trainModelClassGen
(
modelStruct
,
modelName
,
losses
,
modelClass
=
'
cat
'
,
batchSize
=
2
,
optimizer
=
tf
.
keras
.
optimizers
.
Adam
,
learningRate
=
0.001
,
metrics
=
None
,
epochs
=
1
,
outVectors
=
False
,
outClasses
=
False
,
outVecName
=
None
,
outClassName
=
None
):
# simulates generator behaviour, unused
if
metrics
is
None
:
metrics
=
[
'
accuracy
'
]
model
=
modelStruct
(
outVectors
=
outVectors
,
outClasses
=
outClasses
,
modelName
=
modelName
)
# model.summary()
model
.
compile
(
optimizer
=
optimizer
(
learning_rate
=
learningRate
),
loss
=
losses
,
metrics
=
metrics
)
myGen
=
generatorClass
(
modelClass
,
outVectors
=
outVectors
,
outClasses
=
outClasses
,
outVecName
=
outVecName
,
outClassName
=
outClassName
)
logger
=
tf
.
keras
.
callbacks
.
CSVLogger
(
"
models/history/
"
+
modelName
+
"
_
"
+
modelClass
+
"
_history.csv
"
,
append
=
True
)
for
i
in
range
(
epochs
):
print
(
"
Epoch {0} of {1}
"
.
format
(
i
+
1
,
epochs
))
while
True
:
epochEnd
,
x
,
y
=
myGen
.
serveBatch
()
if
epochEnd
:
break
model
.
fit
(
x
,
y
,
callbacks
=
[
logger
],
verbose
=
0
)
# update_progress(myGen.i / myGen.dataLength)
return
model
def
loadModelWeights
(
modelStruct
,
modelName
,
modelClass
=
'
cat
'
,
outVectors
=
False
,
outClasses
=
False
,
optimizer
=
tf
.
keras
.
optimizers
.
Adam
,
learning_rate
=
0.01
,
losses
=
None
,
metrics
=
None
):
# return compiled tf keras model
if
metrics
is
None
:
metrics
=
[
'
accuracy
'
]
if
not
(
outVectors
or
outClasses
):
raise
Exception
(
"
At least one of outVectors or outClasses must be set to True.
"
)
model
=
modelStruct
(
outVectors
=
outVectors
,
outClasses
=
outClasses
,
modelName
=
modelName
)
model
.
load_weights
(
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/models/
'
+
modelName
+
'
_
'
+
modelClass
)
model
.
compile
(
optimizer
=
optimizer
(
learning_rate
=
learning_rate
),
loss
=
losses
,
metrics
=
metrics
)
return
model
def
loadHistory
(
modelName
,
modelClass
=
'
cat
'
):
with
open
(
"
models/history/
"
+
modelName
+
'
_
'
+
modelClass
+
'
_trainHistory
'
,
'
rb
'
)
as
f
:
# loading old history
histories
=
pickle
.
load
(
f
)
for
hist
in
histories
:
print
(
"
Structure: {0}
\n
Class: {1}
\n
Optimizer: {2}
\n
LearningRate: {3}
\n
Losses: {4}
\n
Name: {5}
\n
Epochs: {6}
\n
Timestamp: {7}
\n
Training History:
\n
"
.
format
(
hist
[
'
struct
'
],
hist
[
'
class
'
],
hist
[
'
optimizer
'
],
hist
[
'
lr
'
],
hist
[
'
losses
'
],
hist
[
'
name
'
],
hist
[
'
epochs
'
],
hist
[
'
timestamp
'
]))
for
i
,
epoch
in
enumerate
(
hist
[
'
history
'
]):
print
(
"
{0}: {1}
"
.
format
(
i
,
epoch
))
print
(
"
\n
Evaluation History:
\n
"
)
for
i
,
epoch
in
enumerate
(
hist
[
'
evalHistory
'
]):
print
(
"
{0}: {1}
"
.
format
(
i
,
epoch
))
print
(
"
\n
"
)
def
loadHistories
(
modelSets
):
for
modelSet
in
modelSets
:
print
(
"
Loading {0}
"
.
format
(
modelSet
.
name
))
loadHistory
(
modelSet
.
name
,
modelSet
.
modelClass
)
def
plotHistories
(
modelSets
):
# display loss values over epochs using pyplot
plt
.
figure
()
maxLen
=
0
for
modelSet
in
modelSets
:
with
open
(
"
models/history/
"
+
modelSet
.
name
+
'
_
'
+
modelSet
.
modelClass
+
'
_trainHistory
'
,
'
rb
'
)
as
f
:
# loading old history
histories
=
pickle
.
load
(
f
)
for
hist
in
histories
:
if
len
(
hist
[
'
history
'
])
>
maxLen
:
maxLen
=
len
(
hist
[
'
history
'
])
plt
.
subplot
(
211
)
plt
.
plot
([
x
[
'
loss
'
]
for
x
in
hist
[
'
history
'
]],
label
=
hist
[
'
name
'
])
plt
.
subplot
(
212
)
plt
.
plot
([
x
[
0
]
for
x
in
hist
[
'
evalHistory
'
]],
label
=
hist
[
'
name
'
])
plt
.
subplot
(
211
)
plt
.
ylabel
(
"
Training Loss
"
)
plt
.
xlabel
(
"
Epoch
"
)
plt
.
xticks
(
np
.
arange
(
0
,
maxLen
,
1.0
))
plt
.
subplot
(
212
)
plt
.
ylabel
(
"
Validation Loss
"
)
plt
.
xlabel
(
"
Epoch
"
)
plt
.
xticks
(
np
.
arange
(
0
,
maxLen
,
1.0
))
plt
.
legend
()
plt
.
show
()
plt
.
close
()
class
generatorClass
:
# simulates generator behaviour, unused
def
__init__
(
self
,
modelClass
,
height
=
480
,
width
=
640
,
batchSize
=
2
,
outVectors
=
False
,
outClasses
=
False
,
outVecName
=
None
,
outClassName
=
None
):
if
not
(
outClasses
or
outVectors
):
raise
Exception
(
"
Must have at least one output
"
)
self
.
i
=
0
self
.
basePath
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
+
'
/LINEMOD/
'
+
modelClass
self
.
masterList
=
getMasterList
(
self
.
basePath
)
self
.
dataLength
=
len
(
self
.
masterList
)
self
.
height
=
height
self
.
width
=
width
self
.
outVectors
=
outVectors
self
.
outClasses
=
outClasses
self
.
outVecName
=
outVecName
self
.
outClassName
=
outClassName
self
.
batchSize
=
batchSize
def
serveBatch
(
self
):
xBatch
=
[]
yCoordBatch
=
[]
yClassBatch
=
[]
output
=
{}
for
b
in
range
(
self
.
batchSize
):
if
self
.
i
==
self
.
dataLength
:
self
.
i
=
0
random
.
shuffle
(
self
.
masterList
)
return
True
,
[],
[],
[]
x
=
filePathToArray
(
self
.
basePath
+
'
/rgb/
'
+
self
.
masterList
[
self
.
i
][
0
],
self
.
height
,
self
.
width
)
with
open
(
self
.
basePath
+
'
/labels/
'
+
self
.
masterList
[
self
.
i
][
2
])
as
f
:
labels
=
f
.
readline
().
split
(
'
'
)[
1
:
19
]
yCoordsLabels
=
np
.
zeros
((
self
.
height
,
self
.
width
,
18
))
# 9 coordinates
yClassLabels
=
np
.
zeros
((
self
.
height
,
self
.
width
,
1
))
# 1 class confidence value per model
modelMask
=
filePathToArray
(
self
.
basePath
+
'
/mask/
'
+
self
.
masterList
[
self
.
i
][
1
],
self
.
height
,
self
.
width
)
modelCoords
=
np
.
where
(
modelMask
==
255
)[:
2
]
for
modelCoord
in
zip
(
modelCoords
[
0
][::
3
],
modelCoords
[
1
][::
3
]):
setTrainingPixel
(
yCoordsLabels
,
modelCoord
[
0
],
modelCoord
[
1
],
labels
,
self
.
height
,
self
.
width
)
yClassLabels
[
modelCoord
[
0
]][
modelCoord
[
1
]][
0
]
=
1
xBatch
.
append
(
x
)
yCoordBatch
.
append
(
yCoordsLabels
)
yClassBatch
.
append
(
yClassLabels
)
self
.
i
+=
1
if
self
.
outVectors
:
output
[
self
.
outVecName
]
=
np
.
array
(
yCoordBatch
)
if
self
.
outClasses
:
output
[
self
.
outClassName
]
=
np
.
array
(
yClassBatch
)
return
(
False
,
np
.
array
(
xBatch
),
output
)
modelsDict
=
{
'
uNet_classes
'
:
modelDictVal
(
uNet
,
data
.
classTrainingGenerator
,
tf
.
keras
.
losses
.
BinaryCrossentropy
(),
False
,
True
,
epochs
=
20
,
lr
=
0.001
,
augmentation
=
False
),
'
uNet_coords
'
:
modelDictVal
(
uNet
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
5
,
lr
=
0.001
,
metrics
=
[
'
mae
'
,
'
mse
'
]),
'
uNet_coords_smooth
'
:
modelDictVal
(
uNet
,
data
.
coordsTrainingGenerator
,
smoothL1
,
True
,
False
,
epochs
=
3
,
lr
=
0.0001
,
metrics
=
[
'
mae
'
,
'
mse
'
]),
'
stvNet
'
:
modelDictVal
(
stvNet
,
data
.
combinedTrainingGenerator
,
{
'
coordsOut
'
:
tf
.
keras
.
losses
.
Huber
(),
'
classOut
'
:
tf
.
keras
.
losses
.
BinaryCrossentropy
()},
True
,
True
,
epochs
=
5
,
lr
=
0.00005
,
metrics
=
{
'
coordsOut
'
:
[
'
mae
'
,
'
mse
'
],
"
classOut
"
:
[
'
accuracy
'
]}),
'
stvNet_coords_slow_learner
'
:
modelDictVal
(
stvNet
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
40
,
lr
=
0.00001
,
metrics
=
[
'
mae
'
,
'
mse
'
],
outVecName
=
'
coordsOut
'
),
'
stvNetAltLabels
'
:
modelDictVal
(
stvNet
,
data
.
combinedTrainingGenerator
,
{
'
coordsOut
'
:
tf
.
keras
.
losses
.
Huber
(),
'
classOut
'
:
tf
.
keras
.
losses
.
BinaryCrossentropy
()},
True
,
True
,
epochs
=
10
,
lr
=
0.001
,
metrics
=
{
'
coordsOut
'
:
[
'
mae
'
,
'
mse
'
],
"
classOut
"
:
[
'
accuracy
'
]},
altLabels
=
True
,
augmentation
=
True
),
'
stvNetNormLabels
'
:
modelDictVal
(
stvNet
,
data
.
combinedTrainingGenerator
,
{
'
coordsOut
'
:
tf
.
keras
.
losses
.
Huber
(),
'
classOut
'
:
tf
.
keras
.
losses
.
BinaryCrossentropy
()},
True
,
True
,
epochs
=
10
,
lr
=
0.001
,
metrics
=
{
'
coordsOut
'
:
[
'
mae
'
,
'
mse
'
],
"
classOut
"
:
[
'
accuracy
'
]},
altLabels
=
False
,
augmentation
=
True
),
'
stvNet_coords
'
:
modelDictVal
(
stvNet
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
20
,
lr
=
0.001
,
metrics
=
[
'
mae
'
,
'
mse
'
],
altLabels
=
False
,
augmentation
=
True
),
'
stvNet_coords_altLabels
'
:
modelDictVal
(
stvNet
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
20
,
lr
=
0.001
,
metrics
=
[
'
mae
'
,
'
mse
'
],
altLabels
=
True
,
augmentation
=
True
),
'
stvNet_coords_altLabels_noAug
'
:
modelDictVal
(
stvNet
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
20
,
lr
=
0.001
,
metrics
=
[
'
mae
'
,
'
mse
'
],
altLabels
=
True
,
augmentation
=
False
),
'
stvNet_coords_noAug
'
:
modelDictVal
(
stvNet
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
20
,
lr
=
0.001
,
metrics
=
[
'
mae
'
,
'
mse
'
],
altLabels
=
False
,
augmentation
=
False
),
'
stvNet_classes
'
:
modelDictVal
(
stvNet
,
data
.
classTrainingGenerator
,
tf
.
keras
.
losses
.
BinaryCrossentropy
(),
False
,
True
,
epochs
=
10
,
lr
=
0.001
,
altLabels
=
False
,
augmentation
=
True
),
'
stvNet_classes_noAug
'
:
modelDictVal
(
stvNet
,
data
.
classTrainingGenerator
,
tf
.
keras
.
losses
.
BinaryCrossentropy
(),
False
,
True
,
epochs
=
10
,
lr
=
0.001
,
altLabels
=
False
,
augmentation
=
False
),
'
stvNet_new_coords_alt
'
:
modelDictVal
(
stvNetNew
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
20
,
lr
=
0.001
,
metrics
=
[
'
mae
'
,
'
mse
'
],
altLabels
=
True
,
augmentation
=
False
),
'
stvNet_new_coords
'
:
modelDictVal
(
stvNetNew
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
20
,
lr
=
0.001
,
metrics
=
[
'
mae
'
,
'
mse
'
],
altLabels
=
False
,
augmentation
=
False
),
'
stvNet_new_coords_alt_aug
'
:
modelDictVal
(
stvNetNew
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
20
,
lr
=
0.001
,
metrics
=
[
'
mae
'
,
'
mse
'
],
altLabels
=
True
,
augmentation
=
True
),
'
stvNet_new_coords_aug
'
:
modelDictVal
(
stvNetNew
,
data
.
coordsTrainingGenerator
,
tf
.
keras
.
losses
.
Huber
(),
True
,
False
,
epochs
=
20
,
lr
=
0.001
,
metrics
=
[
'
mae
'
,
'
mse
'
],
altLabels
=
False
,
augmentation
=
True
),
'
stvNet_new_classes
'
:
modelDictVal
(
stvNetNew
,
data
.
classTrainingGenerator
,
tf
.
keras
.
losses
.
BinaryCrossentropy
(),
False
,
True
,
epochs
=
20
,
lr
=
0.001
,
augmentation
=
False
),
'
stvNet_new_combined
'
:
modelDictVal
(
stvNetNew
,
data
.
combinedTrainingGenerator
,
{
'
coordsOut
'
:
tf
.
keras
.
losses
.
Huber
(),
'
classOut
'
:
tf
.
keras
.
losses
.
BinaryCrossentropy
()},
True
,
True
,
epochs
=
20
,
lr
=
0.001
,
metrics
=
{
'
coordsOut
'
:
[
'
mae
'
,
'
mse
'
],
"
classOut
"
:
[
'
accuracy
'
]},
augmentation
=
False
),
}
if
__name__
==
"
__main__
"
:
class_name
=
'
pear
'
modelSets
=
[
modelSet
(
'
uNet_classes
'
,
class_name
),
modelSet
(
'
stvNet_new_coords
'
,
class_name
)]
trainModels
(
modelSets
)
evaluateModels
(
modelSets
)
loadHistories
(
modelSets
)
plotHistories
(
modelSets
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment