Newer
Older
import sys
import os
import time
import argparse
import pandas as pd
import numpy as np
from data_preprocessing import Preprocessor
from features_extractor import feature_extractor
from ClassPreprocessor import remove_weak_classes, resample_classes, create_dict, split_class
from classifiers import classifiers, grid_params
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from evaluate_model import evaluate_model
from sklearn.model_selection import GridSearchCV
import configparser
from re import search
import math
from unidecode import unidecode
import re
import nltk
from ClassPreprocessor import create_dict
def removeMarkers(full_text, listOfMarkers):
if not pd.isna(full_text):
for m in listOfMarkers:
marker = str(m)
marker_with_brcts = '('+ marker +')'
full_text = full_text.replace(marker_with_brcts , "")
full_text = full_text.replace(marker , "")
#full_text = row[textColumn]
i = unidecode(full_text).find(marker_with_brcts)
goOn = False
if i != -1:
goOn = True
while goOn:
full_text = "".join((full_text[:i],"",full_text[i+len(marker_with_brcts):]))
i = unidecode(full_text).find(marker_with_brcts)
if i == -1:
goOn = False
#row[textColumn] = full_text
return full_text
## On vectorise la fonction removeMarkers() afin de l'appliquer de manière efficace (en terme de temps de calcul) sur le dataframe
vec_removeMarkers = np.vectorize(removeMarkers)
# Reading data and preprocessings steps
preprocessor = Preprocessor()
df = pd.read_csv('corpus_tei.csv')
listOfM = df['class'].unique()
df_original = pd.read_csv('data/EDdA_dataframe_withContent.tsv', sep="\t")
preprocessor.remove_null_rows(df_original, 'content')
#df_original = removeMarkers(df_original, 'content', listOfM)
df_original['content_withoutMarkers'] = vec_removeMarkers(df_original.content, listOfM)
df_1 = df_original[['ensemble_domaine_enccre','content']].copy()
df_2 = df_original[['domaine_enccre','content']].copy()
df_3 = df_original[['normClass_artfl','content']].copy()
############ shall we remove articles with less n tokens ####### remove markers
preprocessor.remove_null_rows(df_1, 'content_withoutMarkers')
preprocessor.remove_null_rows(df_1, 'ensemble_domaine_enccre')
preprocessor.remove_null_rows(df_2, 'content_withoutMarkers')
preprocessor.remove_null_rows(df_2, 'domaine_enccre')
preprocessor.remove_null_rows(df_3, 'content_withoutMarkers')
preprocessor.remove_null_rows(df_3, 'normClass_artfl')
df_1 = split_class(df_1, 'ensemble_domaine_enccre')
df_2 = split_class(df_2, 'domaine_enccre')
df_3 = split_class(df_3, 'normClass_artfl')
d_1 = create_dict(df_1, 'ensemble_domaine_enccre')
tosave = pd.DataFrame.from_dict(d_1, orient='index', columns=[ 'Count'])
tosave.to_excel("ensemble_domaine_enccre.xlsx")
d_2 = create_dict(df_2, 'domaine_enccre')
tosave = pd.DataFrame.from_dict(d_2, orient='index', columns=[ 'Count'])
tosave.to_excel("domaine_enccre.xlsx")
d_3 = create_dict(df_3, 'normClass_artfl')
tosave = pd.DataFrame.from_dict(d_3, orient='index', columns=[ 'Count'])
tosave.to_excel("normClass_artfl.xlsx")
df_1.to_csv('dataframe_with_ensemble_domaine_enccre.csv')
df_2.to_csv('dataframe_with_domaine_enccre.csv')
df_3.to_csv('dataframe_with_normClass_artfl.csv')
print(df_original.shape)