Skip to content
Snippets Groups Projects
tmp_preprocess_data.py 3.41 KiB
Newer Older
import sys
import os
import time
import argparse
import pandas as pd
import numpy as np
from data_preprocessing import Preprocessor
from features_extractor import feature_extractor
from ClassPreprocessor import remove_weak_classes, resample_classes, create_dict, split_class
from classifiers import classifiers, grid_params
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from evaluate_model import evaluate_model
from sklearn.model_selection import GridSearchCV
import configparser
from re import search
import math
from unidecode import unidecode
import re
import nltk
from ClassPreprocessor import create_dict



def removeMarkers(full_text, listOfMarkers):
   
    if not pd.isna(full_text):
        for m in listOfMarkers:
            marker = str(m)
            marker_with_brcts = '('+ marker +')'
            full_text = full_text.replace(marker_with_brcts , "")
            full_text = full_text.replace(marker , "")
            #full_text = row[textColumn]
            i = unidecode(full_text).find(marker_with_brcts)
            goOn = False
            if i != -1:
                goOn = True
            while goOn:

                full_text = "".join((full_text[:i],"",full_text[i+len(marker_with_brcts):]))
                i = unidecode(full_text).find(marker_with_brcts)
                if i == -1:
                    goOn = False
            #row[textColumn] = full_text
    return full_text
## On vectorise la fonction removeMarkers() afin de l'appliquer de manière efficace (en terme de temps de calcul) sur le dataframe
vec_removeMarkers = np.vectorize(removeMarkers)



# Reading data and preprocessings steps

preprocessor = Preprocessor()
df = pd.read_csv('corpus_tei.csv')
listOfM = df['class'].unique()

df_original = pd.read_csv('data/EDdA_dataframe_withContent.tsv', sep="\t")
preprocessor.remove_null_rows(df_original, 'content')

#df_original = removeMarkers(df_original, 'content', listOfM)
df_original['content_withoutMarkers'] = vec_removeMarkers(df_original.content, listOfM)


df_1 = df_original[['ensemble_domaine_enccre','content']].copy()
df_2 = df_original[['domaine_enccre','content']].copy()
df_3 = df_original[['normClass_artfl','content']].copy()

############ shall we remove articles with less n tokens ####### remove markers
preprocessor.remove_null_rows(df_1, 'content_withoutMarkers')
preprocessor.remove_null_rows(df_1, 'ensemble_domaine_enccre')
preprocessor.remove_null_rows(df_2, 'content_withoutMarkers')
preprocessor.remove_null_rows(df_2, 'domaine_enccre')
preprocessor.remove_null_rows(df_3, 'content_withoutMarkers')
preprocessor.remove_null_rows(df_3, 'normClass_artfl')

df_1 = split_class(df_1, 'ensemble_domaine_enccre')
df_2 = split_class(df_2, 'domaine_enccre')
df_3 = split_class(df_3, 'normClass_artfl')




d_1 = create_dict(df_1, 'ensemble_domaine_enccre')
tosave = pd.DataFrame.from_dict(d_1, orient='index',  columns=[ 'Count'])
tosave.to_excel("ensemble_domaine_enccre.xlsx")

d_2 = create_dict(df_2, 'domaine_enccre')
tosave = pd.DataFrame.from_dict(d_2, orient='index',  columns=[ 'Count'])
tosave.to_excel("domaine_enccre.xlsx")

d_3 = create_dict(df_3, 'normClass_artfl')
tosave = pd.DataFrame.from_dict(d_3, orient='index',  columns=[ 'Count'])
tosave.to_excel("normClass_artfl.xlsx")

df_1.to_csv('dataframe_with_ensemble_domaine_enccre.csv')
df_2.to_csv('dataframe_with_domaine_enccre.csv')
df_3.to_csv('dataframe_with_normClass_artfl.csv')



print(df_original.shape)