Newer
Older
import sys
import os
import time
import argparse
import pandas as pd
from data_preprocessing import Preprocessor
from features_extractor import feature_extractor
from ClassPreprocessor import remove_weak_classes, resample_classes, create_dict, split_class
from classifiers import classifiers, grid_params
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from evaluate_model import evaluate_model
from sklearn.model_selection import GridSearchCV
import configparser
parser = argparse.ArgumentParser()
parser.add_argument("dataPath", help="Path of the dataframe")
parser.add_argument("columnText", help="the column name of the text that should preproceed", default = 'content')
parser.add_argument("columnClass", help="ColumnClass the column name of the classes")
parser.add_argument("minOfInstancePerClass", help="minOfInstancePerClass the minimum of instance required for each class", type=int)
parser.add_argument("maxOfInstancePerClass", help="maxOfInstancePerClass the maximum of instance required resamling classes", type=int)
args = parser.parse_args()
dataPath = args.dataPath
columnText = args.columnText
columnClass = args.columnClass
minOfInstancePerClass = args.minOfInstancePerClass
maxOfInstancePerClass = args.maxOfInstancePerClass
if not os.path.exists('reports'):
os.makedirs('reports')
if not os.path.exists(os.path.join('reports', columnClass)):
os.makedirs(os.path.join('reports', columnClass))
# create directory in the reports directory so save the classification results
dir_name_report = str(minOfInstancePerClass) + '_' + str(maxOfInstancePerClass)
if not os.path.exists(os.path.join('reports', columnClass, dir_name_report)):
os.makedirs(os.path.join('reports', columnClass, dir_name_report))
# Reading data and preprocessings steps
preprocessor = Preprocessor()
df = df_original[[columnClass,columnText]].copy()
df = resample_classes(df, columnClass, maxOfInstancePerClass)
#Read configuration file for retreiving parameters of features extractors
config = configparser.ConfigParser()
config.read('settings.conf')
vectorization_max_df = int(config.get('vectorizers','vectorization_max_df')) if config.get('vectorizers','vectorization_max_df').isdigit() else float(config.get('vectorizers','vectorization_max_df'))
vectorization_min_df = int(config.get('vectorizers','vectorization_min_df')) if config.get('vectorizers','vectorization_min_df').isdigit() else float(config.get('vectorizers','vectorization_min_df'))
vectorization_numberOfFeatures = int(config.get('vectorizers','vectorization_numberOfFeatures')) if config.get('vectorizers','vectorization_numberOfFeatures').isdigit() else None
doc2vec_vec_size = int(config.get('vectorizers','doc2vec_vec_size'))
doc2vec_epochs = int(config.get('vectorizers','doc2vec_epochs'))
doc2vec_lr = float(config.get('vectorizers','doc2vec_lr'))
features_techniques = [
('counter', extractor.count_vect(max_df = vectorization_max_df, min_df = vectorization_min_df, numberOfFeatures = vectorization_numberOfFeatures )),
('tf_idf', extractor.tf_idf(max_df = vectorization_max_df, min_df = vectorization_min_df, numberOfFeatures = vectorization_numberOfFeatures)),
('doc2vec', extractor.doc2vec(doc2vec_epochs, doc2vec_vec_size, doc2vec_lr))]
#prepare data
df = df[df[columnClass] != 'unclassified']
y = df[columnClass]
#case of full text
for feature_technique_name, features in features_techniques:
train_x, test_x, train_y, test_y = train_test_split(features, y, test_size=0.33, random_state=42, stratify = y )
encoder = preprocessing.LabelEncoder()
train_y = encoder.fit_transform(train_y)
valid_y = encoder.fit_transform(test_y)
for tmp_clf, tmp_grid_params in zip(classifiers, grid_params):
clf_name, clf = tmp_clf
grid_param_name, grid_param = tmp_grid_params
print(clf_name, clf, grid_param_name, grid_param)
if clf_name == 'bayes' :
if feature_technique_name == 'doc2vec':
continue
else:
t_begin = time.time()
clf.fit(train_x, train_y)
t_end =time.time()
training_time = t_end - t_begin
else :
clf = GridSearchCV(clf, grid_param, refit = True, verbose = 3)
t_begin = time.time()
clf.fit(train_x, train_y)
t_end =time.time()
training_time = t_end - t_begin
y_pred = clf.predict(test_x)
#evaluate model
file_name_report = columnInput + '_' +feature_technique_name + '_' + clf_name
report, accuracy, weighted_avg = evaluate_model(clf, test_x, valid_y, y_pred, valid_y, [str(e) for e in encoder.transform(encoder.classes_)], encoder.classes_, os.path.join('reports', columnClass, dir_name_report, file_name_report)+'.pdf')
with open(os.path.join('reports', columnClass, dir_name_report, file_name_report+'.txt'), 'w') as f:
sys.stdout = f # Change the standard output to the file we created.
print(report)
print('accuracy : {}'.format(accuracy))
print('weighted_Precision : {}'.format(weighted_avg['precision']))
print('weighted_Recall : {}'.format(weighted_avg['recall']))
print('weighted_F-score : {}'.format(weighted_avg['f1-score']))
print('weighted_Support : {}'.format(weighted_avg['support']))
print(dict(zip(encoder.classes_, encoder.transform(encoder.classes_))))
print('training time : {}'.format(training_time))
#sys.stdout = sys.stdout # Reset the standard output to its original value
sys.stdout = sys.__stdout__