Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"accelerator": "GPU",
"colab": {
"name": "BertFineTuning_.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "8hzEGHl7gmzk"
},
"source": [
"## Setup GPU"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "dPOU-Efhf4ui",
"outputId": "1e3142a8-6351-43f3-9147-68406520b7ee"
},
"source": [
"import torch\n",
"\n",
"# If there's a GPU available...\n",
"if torch.cuda.is_available(): \n",
"\n",
" # Tell PyTorch to use the GPU. \n",
" device = torch.device(\"cuda\")\n",
"\n",
" print('There are %d GPU(s) available.' % torch.cuda.device_count())\n",
"\n",
" print('We will use the GPU:', torch.cuda.get_device_name(0))\n",
"\n",
"# If not...\n",
"else:\n",
" print('No GPU available, using the CPU instead.')\n",
" device = torch.device(\"cpu\")"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"No GPU available, using the CPU instead.\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Jr-S9yYIgGkA"
},
"source": [
"## Install packages"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pwmZ5bBvgGNh",
"outputId": "79c5fb08-a9f4-41bc-eb4d-ab448c5fb4a7"
},
"source": [
"pip install transformers"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: transformers in /usr/local/lib/python3.7/dist-packages (4.10.0)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.23.0)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from transformers) (21.0)\n",
"Requirement already satisfied: tokenizers<0.11,>=0.10.1 in /usr/local/lib/python3.7/dist-packages (from transformers) (0.10.3)\n",
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.62.0)\n",
"Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers) (4.6.4)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from transformers) (5.4.1)\n",
"Requirement already satisfied: sacremoses in /usr/local/lib/python3.7/dist-packages (from transformers) (0.0.45)\n",
"Requirement already satisfied: huggingface-hub>=0.0.12 in /usr/local/lib/python3.7/dist-packages (from transformers) (0.0.16)\n",
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.19.5)\n",
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2019.12.20)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.0.12)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from huggingface-hub>=0.0.12->transformers) (3.7.4.3)\n",
"Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->transformers) (2.4.7)\n",
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers) (3.5.0)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.24.3)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2021.5.30)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (3.0.4)\n",
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10)\n",
"Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (7.1.2)\n",
"Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.15.0)\n",
"Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.0.1)\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "VFXEpG00gXkL",
"outputId": "2336f39a-78b7-4118-e754-508d876c51f9"
},
"source": [
"pip install sentencepiece"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: sentencepiece in /usr/local/lib/python3.7/dist-packages (0.1.96)\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "12SA-qPFgsVo"
},
"source": [
"## Utils functions"
]
},
{
"cell_type": "code",
"metadata": {
"id": "WkIVcabUgxIl"
},
"source": [
"def create_dict(df, classColumnName):\n",
" return dict(df[classColumnName].value_counts())\n",
"\n",
"def remove_weak_classes(df, classColumnName, threshold):\n",
"\n",
" dictOfClassInstances = create_dict(df,classColumnName)\n",
"\n",
"\n",
" dictionary = {k: v for k, v in dictOfClassInstances.items() if v >= threshold }\n",
" keys = [*dictionary]\n",
" df_tmp = df[~ df[classColumnName].isin(keys)]\n",
" df = pd.concat([df,df_tmp]).drop_duplicates(keep=False)\n",
" return df\n",
"\n",
"\n",
"def resample_classes(df, classColumnName, numberOfInstances):\n",
" \n",
" #random numberOfInstances elements\n",
" replace = False # with replacement\n",
"\n",
" fn = lambda obj: obj.loc[np.random.choice(obj.index, numberOfInstances if len(obj) > numberOfInstances else len(obj), replace),:]\n",
" return df.groupby(classColumnName, as_index=False).apply(fn)\n",
" "
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "c5QKcXulhNJ-"
},
"source": [
"## Load Data"
]
},
{
"cell_type": "code",
"metadata": {
"id": "vonJ-d4Qg1g5"
},
"source": [
"import pandas as pd \n",
"import numpy as np\n",
"from sklearn import preprocessing\n",
"from sklearn.model_selection import train_test_split"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ouU5usvXg4PA"
},
"source": [
"dataPath = 'dataframe_with_ensemble_domaine_enccre.csv'\n",
"columnText = 'contentWithoutClass'\n",
"columnClass = 'ensemble_domaine_enccre'\n",
"minOfInstancePerClass = 200\n",
"maxOfInstancePerClass = 1500"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "5u1acjunhoxe"
},
"source": [
"df = pd.read_csv(dataPath)\n",
"df = remove_weak_classes(df, columnClass, minOfInstancePerClass)\n",
"df = resample_classes(df, columnClass, maxOfInstancePerClass)\n",
"df = df[df[columnClass] != 'unclassified']"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "zrjZvs2dhzAy"
},
"source": [
"y = df[columnClass]\n",
"numberOfClasses = y.nunique()\n",
"encoder = preprocessing.LabelEncoder()\n",
"y = encoder.fit_transform(y)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "u9AxxaA_h1CM"
},
"source": [
"train_x, test_x, train_y, test_y = train_test_split(df, y, test_size=0.33, random_state=42, stratify = y )\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Xt_PhH_6h1_3"
},
"source": [
"sentences = train_x[columnText].values\n",
"labels = train_y.tolist()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Gs4Agx_5h43M"
},
"source": [
"# Model\n",
"## Tokenisation & Input Formatting"
]
},
{
"cell_type": "code",
"metadata": {
"id": "YZ5PhEYZiCEA"
},
"source": [
"tokeniser_bert = 'bert-base-multilingual-cased'\n",
"tokeniser_camembert = 'camembert-base'\n",
"\n",
"model_bert = \"bert-base-multilingual-cased\"\n",
"model_camembert = 'camembert-base'"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "C4bigx_3ibuN",
"outputId": "9d54db26-9920-4a92-bb1e-4534f287140f"
},
"source": [
"from transformers import BertTokenizer, CamembertTokenizer\n",
"\n",
"# Load the BERT tokenizer.\n",
"print('Loading BERT tokenizer...')\n",
"tokenizer = BertTokenizer.from_pretrained(tokeniser_bert, do_lower_case=True)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Loading BERT tokenizer...\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5hNod5X9jDZN",
"outputId": "1166b782-d384-4388-de21-21091dc9f925"
},
"source": [
" # Tokenize all of the sentences and map the tokens to thier word IDs.\n",
"input_ids = []\n",
"\n",
"# For every sentence...\n",
"for sent in sentences:\n",
" # `encode` will:\n",
" # (1) Tokenize the sentence.\n",
" # (2) Prepend the `[CLS]` token to the start.\n",
" # (3) Append the `[SEP]` token to the end.\n",
" # (4) Map tokens to their IDs.\n",
" encoded_sent = tokenizer.encode(\n",
" sent, # Sentence to encode.\n",
" add_special_tokens = True, # Add '[CLS]' and '[SEP]'\n",
"\n",
" # This function also supports truncation and conversion\n",
" # to pytorch tensors, but I need to do padding, so I\n",
" # can't use these features.\n",
" #max_length = 128, # Truncate all sentences.\n",
" #return_tensors = 'pt', # Return pytorch tensors.\n",
" )\n",
" \n",
" # Add the encoded sentence to the list.\n",
" input_ids.append(encoded_sent)\n",
"\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Token indices sequence length is longer than the specified maximum sequence length for this model (866 > 512). Running this sequence through the model will result in indexing errors\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "W9EWv5JvjGH3",
"outputId": "9072122d-3586-40fe-9d75-5b6e9035d6d2"
},
"source": [
"print('Max sentence length: ', max([len(sen) for sen in input_ids])) "
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Max sentence length: 3462\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "xh1TQJyvjOx5"
},
"source": [
"max_len = 180\n",
"padded = []\n",
"for i in input_ids:\n",
"\n",
" if len(i) > max_len:\n",
" padded.extend([i[:max_len]])\n",
" else:\n",
" padded.extend([i + [0] * (max_len - len(i))])\n",
"\n",
"\n",
"padded = input_ids = np.array(padded)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ZiwY6gn0jUkD"
},
"source": [
" # Create attention masks\n",
"attention_masks = []\n",
"\n",
"# For each sentence...\n",
"for sent in padded:\n",
" \n",
" # Create the attention mask.\n",
" # - If a token ID is 0, then it's padding, set the mask to 0.\n",
" # - If a token ID is > 0, then it's a real token, set the mask to 1.\n",
" att_mask = [int(token_id > 0) for token_id in sent]\n",
" \n",
" # Store the attention mask for this sentence.\n",
" attention_masks.append(att_mask)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "oBTR5AfAjXJe"
},
"source": [
"# Use 90% for training and 10% for validation.\n",
"train_inputs, validation_inputs, train_labels, validation_labels = train_test_split(padded, labels, \n",
" random_state=2018, test_size=0.1, stratify = labels )\n",
"# Do the same for the masks.\n",
"train_masks, validation_masks, _, _ = train_test_split(attention_masks, labels,\n",
" random_state=2018, test_size=0.1, stratify = labels)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "b9Mw5kq3jhTb"
},
"source": [
"# Convert all inputs and labels into torch tensors, the required datatype \n",
"# for my model.\n",
"train_inputs = torch.tensor(train_inputs)\n",
"validation_inputs = torch.tensor(validation_inputs)\n",
"\n",
"train_labels = torch.tensor(train_labels)\n",
"validation_labels = torch.tensor(validation_labels)\n",
"\n",
"train_masks = torch.tensor(train_masks)\n",
"validation_masks = torch.tensor(validation_masks)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "UfFWzbENjnkw"
},
"source": [
"from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler\n",
"\n",
"# The DataLoader needs to know the batch size for training, so I specify it here.\n",
"# For fine-tuning BERT on a specific task, the authors recommend a batch size of\n",
"# 16 or 32.\n",
"\n",
"batch_size = 32\n",
"\n",
"# Create the DataLoader for training set.\n",
"train_data = TensorDataset(train_inputs, train_masks, train_labels)\n",
"train_sampler = RandomSampler(train_data)\n",
"train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)\n",
"\n",
"# Create the DataLoader for validation set.\n",
"validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels)\n",
"validation_sampler = SequentialSampler(validation_data)\n",
"validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=batch_size)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "x45JNGqhkUn2"
},
"source": [
"## Training"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 463
},
"id": "C7M2Er1ajsTf",
"outputId": "fe4c13b7-5157-49b4-e878-6d7676d4d1a3"
},
"source": [
"from transformers import BertForSequenceClassification, AdamW, BertConfig, CamembertForSequenceClassification\n",
"\n",
"# Load BertForSequenceClassification, the pretrained BERT model with a single \n",
"# linear classification layer on top.\n",
"\n",
"model = BertForSequenceClassification.from_pretrained(\n",
" model_bert, # Use the 12-layer BERT model, with an uncased vocab.\n",
" num_labels = numberOfClasses, # The number of output labels--2 for binary classification.\n",
" # You can increase this for multi-class tasks. \n",
" output_attentions = False, # Whether the model returns attentions weights.\n",
" output_hidden_states = False, # Whether the model returns all hidden-states.\n",
")\n",
"\n",
"# Tell pytorch to run this model on the GPU.\n",
"model.cuda()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Some weights of the model checkpoint at bert-base-multilingual-cased were not used when initializing BertForSequenceClassification: ['cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.bias']\n",
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-multilingual-cased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
},
{
"output_type": "error",
"ename": "RuntimeError",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-120-80c23ac5f353>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;31m# Tell pytorch to run this model on the GPU.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcuda\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36mcuda\u001b[0;34m(self, device)\u001b[0m\n\u001b[1;32m 635\u001b[0m \u001b[0mModule\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 636\u001b[0m \"\"\"\n\u001b[0;32m--> 637\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_apply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcuda\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 638\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 639\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mxpu\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_apply\u001b[0;34m(self, fn)\u001b[0m\n\u001b[1;32m 528\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_apply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 529\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchildren\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 530\u001b[0;31m \u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_apply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 531\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 532\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcompute_should_use_set_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtensor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtensor_applied\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_apply\u001b[0;34m(self, fn)\u001b[0m\n\u001b[1;32m 528\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_apply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 529\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchildren\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 530\u001b[0;31m \u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_apply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 531\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 532\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcompute_should_use_set_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtensor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtensor_applied\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_apply\u001b[0;34m(self, fn)\u001b[0m\n\u001b[1;32m 528\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_apply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 529\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchildren\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 530\u001b[0;31m \u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_apply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 531\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 532\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcompute_should_use_set_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtensor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtensor_applied\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_apply\u001b[0;34m(self, fn)\u001b[0m\n\u001b[1;32m 550\u001b[0m \u001b[0;31m# `with torch.no_grad():`\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 551\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mno_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 552\u001b[0;31m \u001b[0mparam_applied\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 553\u001b[0m \u001b[0mshould_use_set_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcompute_should_use_set_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparam_applied\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 554\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mshould_use_set_data\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m<lambda>\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 635\u001b[0m \u001b[0mModule\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 636\u001b[0m \"\"\"\n\u001b[0;32m--> 637\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_apply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mlambda\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcuda\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 638\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 639\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mxpu\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mRuntimeError\u001b[0m: CUDA out of memory. Tried to allocate 352.00 MiB (GPU 0; 11.17 GiB total capacity; 10.43 GiB already allocated; 91.81 MiB free; 10.63 GiB reserved in total by PyTorch)"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "xd_cG-8pj4Iw"
},
"source": [
"#Note: AdamW is a class from the huggingface library (as opposed to pytorch) \n",
"# I believe the 'W' stands for 'Weight Decay fix\"\n",
"optimizer = AdamW(model.parameters(),\n",
" lr = 2e-5, # args.learning_rate - default is 5e-5, our notebook had 2e-5\n",
" eps = 1e-8 # args.adam_epsilon - default is 1e-8.\n",
" )"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "65G-uHuLj4_6"
},
"source": [
"from transformers import get_linear_schedule_with_warmup\n",
"\n",
"# Number of training epochs (authors recommend between 2 and 4)\n",
"epochs = 4\n",
"\n",
"# Total number of training steps is number of batches * number of epochs.\n",
"total_steps = len(train_dataloader) * epochs\n",
"\n",
"# Create the learning rate scheduler.\n",
"scheduler = get_linear_schedule_with_warmup(optimizer, \n",
" num_warmup_steps = 0, # Default value in run_glue.py\n",
" num_training_steps = total_steps)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "lHSOuwcMj9jf"
},
"source": [
"import numpy as np\n",
"\n",
"# Function to calculate the accuracy of our predictions vs labels\n",
"def flat_accuracy(preds, labels):\n",
" pred_flat = np.argmax(preds, axis=1).flatten()\n",
" labels_flat = labels.flatten()\n",
" return np.sum(pred_flat == labels_flat) / len(labels_flat) "
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Z0S3br-7kASm"
},
"source": [
"import time\n",
"import datetime\n",
"\n",
"def format_time(elapsed):\n",
" '''\n",
" Takes a time in seconds and returns a string hh:mm:ss\n",
" '''\n",
" # Round to the nearest second.\n",
" elapsed_rounded = int(round((elapsed)))\n",
" \n",
" # Format as hh:mm:ss\n",
" return str(datetime.timedelta(seconds=elapsed_rounded))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "SbHBbYpwkKaA"
},
"source": [
"import random\n",
"\n",
"# This training code is based on the `run_glue.py` script here:\n",
"# https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L128\n",
"\n",
"\n",
"# Set the seed value all over the place to make this reproducible.\n",
"seed_val = 42\n",
"\n",
"random.seed(seed_val)\n",
"np.random.seed(seed_val)\n",
"torch.manual_seed(seed_val)\n",
"torch.cuda.manual_seed_all(seed_val)\n",
"\n",
"# Store the average loss after each epoch so I can plot them.\n",
"loss_values = []\n",
"\n",
"# For each epoch...\n",
"for epoch_i in range(0, epochs):\n",
" \n",
" # ========================================\n",
" # Training\n",
" # ========================================\n",
" \n",
" # Perform one full pass over the training set.\n",
"\n",
" print(\"\")\n",
" print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))\n",
" print('Training...')\n",
"\n",
" # Measure how long the training epoch takes.\n",
" t0 = time.time()\n",
"\n",
" # Reset the total loss for this epoch.\n",
" total_loss = 0\n",
"\n",
" # Put the model into training mode.\n",
" model.train()\n",
"\n",
" # For each batch of training data...\n",
" for step, batch in enumerate(train_dataloader):\n",
"\n",
" # Progress update every 40 batches.\n",
" if step % 40 == 0 and not step == 0:\n",
" # Calculate elapsed time in minutes.\n",
" elapsed = format_time(time.time() - t0)\n",
" \n",
" # Report progress.\n",
" print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))\n",
"\n",
" # Unpack this training batch from the dataloader. \n",
" #\n",
" # As I unpack the batch, I'll also copy each tensor to the GPU using the \n",
" # `to` method.\n",
" #\n",
" # `batch` contains three pytorch tensors:\n",
" # [0]: input ids \n",
" # [1]: attention masks\n",
" # [2]: labels \n",
" b_input_ids = batch[0].to(device)\n",
" b_input_mask = batch[1].to(device)\n",
" b_labels = batch[2].to(device)\n",
"\n",
" # Always clear any previously calculated gradients before performing a\n",
" # backward pass. PyTorch doesn't do this automatically because \n",
" # accumulating the gradients is \"convenient while training RNNs\". \n",
" # (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch)\n",
" model.zero_grad() \n",
"\n",
" # Perform a forward pass (evaluate the model on this training batch).\n",
" # This will return the loss (rather than the model output) because I\n",
" # have provided the `labels`.\n",
" # The documentation for this `model` function is here: \n",
" # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification\n",
" outputs = model(b_input_ids, \n",
" token_type_ids=None, \n",
" attention_mask=b_input_mask, \n",
" labels=b_labels)\n",
" \n",
" # The call to `model` always returns a tuple, so I need to pull the \n",
" # loss value out of the tuple.\n",
" loss = outputs[0]\n",
"\n",
" # Accumulate the training loss over all of the batches so that I can\n",
" # calculate the average loss at the end. `loss` is a Tensor containing a\n",
" # single value; the `.item()` function just returns the Python value \n",
" # from the tensor.\n",
" total_loss += loss.item()\n",
"\n",
" # Perform a backward pass to calculate the gradients.\n",
" loss.backward()\n",
"\n",
" # Clip the norm of the gradients to 1.0.\n",
" # This is to help prevent the \"exploding gradients\" problem.\n",
" torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)\n",
"\n",
" # Update parameters and take a step using the computed gradient.\n",
" # The optimizer dictates the \"update rule\"--how the parameters are\n",
" # modified based on their gradients, the learning rate, etc.\n",
" optimizer.step()\n",
"\n",
" # Update the learning rate.\n",
" scheduler.step()\n",
"\n",
" # Calculate the average loss over the training data.\n",
" avg_train_loss = total_loss / len(train_dataloader) \n",
" \n",
" # Store the loss value for plotting the learning curve.\n",
" loss_values.append(avg_train_loss)\n",
"\n",
" print(\"\")\n",
" print(\" Average training loss: {0:.2f}\".format(avg_train_loss))\n",
" print(\" Training epoch took: {:}\".format(format_time(time.time() - t0)))\n",
" \n",
" # ========================================\n",
" # Validation\n",
" # ========================================\n",
" # After the completion of each training epoch, measure the performance on\n",
" # the validation set.\n",
"\n",
" print(\"\")\n",
" print(\"Running Validation...\")\n",
"\n",
" t0 = time.time()\n",
"\n",
" # Put the model in evaluation mode--the dropout layers behave differently\n",
" # during evaluation.\n",
" model.eval()\n",
"\n",
" # Tracking variables \n",
" eval_loss, eval_accuracy = 0, 0\n",
" nb_eval_steps, nb_eval_examples = 0, 0\n",
"\n",
" # Evaluate data for one epoch\n",
" for batch in validation_dataloader:\n",
" \n",
" # Add batch to GPU\n",
" batch = tuple(t.to(device) for t in batch)\n",
" \n",
" # Unpack the inputs from dataloader\n",
" b_input_ids, b_input_mask, b_labels = batch\n",
" \n",
" # Telling the model not to compute or store gradients, saving memory and\n",
" # speeding up validation\n",
" with torch.no_grad(): \n",
"\n",
" # Forward pass, calculate logit predictions.\n",
" # This will return the logits rather than the loss because we have\n",
" # not provided labels.\n",
" # token_type_ids is the same as the \"segment ids\", which \n",
" # differentiates sentence 1 and 2 in 2-sentence tasks.\n",
" # The documentation for this `model` function is here: \n",
" # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification\n",
" outputs = model(b_input_ids, \n",
" token_type_ids=None, \n",
" attention_mask=b_input_mask)\n",
" \n",
" # Get the \"logits\" output by the model. The \"logits\" are the output\n",
" # values prior to applying an activation function like the softmax.\n",
" logits = outputs[0]\n",
"\n",
" # Move logits and labels to CPU\n",
" logits = logits.detach().cpu().numpy()\n",
" label_ids = b_labels.to('cpu').numpy()\n",
" \n",
" # Calculate the accuracy for this batch of test sentences.\n",
" tmp_eval_accuracy = flat_accuracy(logits, label_ids)\n",
" \n",
" # Accumulate the total accuracy.\n",
" eval_accuracy += tmp_eval_accuracy\n",
"\n",
" # Track the number of batches\n",
" nb_eval_steps += 1\n",
"\n",
" # Report the final accuracy for this validation run.\n",
" print(\" Accuracy: {0:.2f}\".format(eval_accuracy/nb_eval_steps))\n",
" print(\" Validation took: {:}\".format(format_time(time.time() - t0)))\n",
"\n",
"print(\"\")\n",
"print(\"Training complete!\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "VJwyfmakkQyj"
},
"source": [
"## Test"
]
},
{
"cell_type": "code",
"metadata": {
"id": "VAyzmfhZCGZo"
},
"source": [
"sentences_test = test_x[columnText].values\n",
"labels_test = test_y.tolist()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "lZFXr_sdCJcb"
},
"source": [
"# Tokenize all of the sentences and map the tokens to thier word IDs.\n",
"input_ids_test = []\n",
"# For every sentence...\n",
"for sent in sentences_test:\n",
" # `encode` will:\n",
" # (1) Tokenize the sentence.\n",
" # (2) Prepend the `[CLS]` token to the start.\n",
" # (3) Append the `[SEP]` token to the end.\n",
" # (4) Map tokens to their IDs.\n",
" encoded_sent = tokenizer.encode(\n",
" sent, # Sentence to encode.\n",
" add_special_tokens = True, # Add '[CLS]' and '[SEP]'\n",
" )\n",
" \n",
" input_ids_test.append(encoded_sent)\n",
"\n",
"# Pad our input tokens\n",
"padded_test = []\n",
"for i in input_ids_test:\n",
"\n",
" if len(i) > max_len:\n",
" padded_test.extend([i[:max_len]])\n",
" else:\n",
" padded_test.extend([i + [0] * (max_len - len(i))])\n",
"input_ids_test = np.array(padded_test)\n",
"\n",
"# Create attention masks\n",
"attention_masks = []\n",
"\n",
"# Create a mask of 1s for each token followed by 0s for padding\n",
"for seq in input_ids_test:\n",
" seq_mask = [float(i>0) for i in seq]\n",
" attention_masks.append(seq_mask) \n",
"\n",
"# Convert to tensors.\n",
"prediction_inputs = torch.tensor(input_ids_test)\n",
"prediction_masks = torch.tensor(attention_masks)\n",
"prediction_labels = torch.tensor(labels_test)\n",
"\n",
"# Set the batch size. \n",
"batch_size = 32 \n",
"\n",
"# Create the DataLoader.\n",
"prediction_data = TensorDataset(prediction_inputs, prediction_masks, prediction_labels)\n",
"prediction_sampler = SequentialSampler(prediction_data)\n",
"prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "SUDcxi03Cmf-"
},
"source": [
"print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs)))\n",
"\n",
"# Put model in evaluation mode\n",
"model.eval()\n",
"\n",
"# Tracking variables \n",
"predictions_test , true_labels = [], []\n",
"\n",
"# Predict \n",
"for batch in prediction_dataloader:\n",
"# Add batch to GPU\n",
" batch = tuple(t.to(device) for t in batch)\n",
" \n",
" # Unpack the inputs from the dataloader\n",
" b_input_ids, b_input_mask, b_labels = batch\n",
" \n",
" # Telling the model not to compute or store gradients, saving memory and \n",
" # speeding up prediction\n",
" with torch.no_grad():\n",
" # Forward pass, calculate logit predictions\n",
" outputs = model(b_input_ids, token_type_ids=None, \n",
" attention_mask=b_input_mask)\n",
"\n",
" logits = outputs[0]\n",
" #print(logits)\n",
"\n",
" # Move logits and labels to CPU\n",
" logits = logits.detach().cpu().numpy()\n",
" label_ids = b_labels.to('cpu').numpy()\n",
" #print(logits)\n",
" \n",
" # Store predictions and true labels\n",
" predictions_test.append(logits)\n",
" true_labels.append(label_ids)\n",
"\n",
"print(' DONE.')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "c3i7szp3Cn5u"
},
"source": [
"from sklearn.metrics import *\n",
"\n",
"pred_labels = []\n",
"\n",
"# Evaluate each test batch using many matrics\n",
"print('Calculating the matrics for each batch...')\n",
"\n",
"for i in range(len(true_labels)):\n",
" \n",
" # The predictions for this batch are a 2-column ndarray (one column for \"0\" \n",
" # and one column for \"1\"). Pick the label with the highest value and turn this\n",
" # in to a list of 0s and 1s.\n",
" pred_labels_i = np.argmax(predictions_test[i], axis=1).flatten()\n",
" pred_labels.append(pred_labels_i)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "0bU9-DsBCxSO"
},
"source": [
"pred_labels_ = [item for sublist in pred_labels for item in sublist]\n",
"true_labels_ = [item for sublist in true_labels for item in sublist]\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZUM_U2QlC4K5"
},
"source": [