Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "EDdA-Classification_CNN_Conv1D-EGC.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "0yFsoHXX8Iyy"
},
"source": [
"# Deep learning for EDdA classification"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tFlUCDL2778i"
},
"source": [
"## Setup colab environment"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Sp8d_Uus7SHJ",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "976ed0dd-7aeb-4f64-e34b-117733abf38c"
},
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jQBu-p6hBU-j"
},
"source": [
"### Install packages"
]
},
{
"cell_type": "code",
"metadata": {
"id": "bTIXsF6kBUdh"
},
"source": [
"#!pip install zeugma\n",
"#!pip install plot_model"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "56-04SNF8BMx"
},
"source": [
"### Import librairies"
]
},
{
"cell_type": "code",
"metadata": {
"id": "HwWkSznz7SEv"
},
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pickle\n",
"import os\n",
"\n",
"from tqdm import tqdm\n",
"import requests, zipfile, io\n",
"import codecs\n",
"\n",
"from sklearn import preprocessing # LabelEncoder\n",
"from sklearn.metrics import classification_report\n",
"from sklearn.metrics import confusion_matrix\n",
"\n",
"from keras.preprocessing import sequence\n",
"from keras.preprocessing.text import Tokenizer\n",
"\n",
"from keras.layers import BatchNormalization, Input, Reshape, Conv1D, MaxPool1D, Conv2D, MaxPool2D, Concatenate\n",
"from keras.layers import Embedding, Dropout, Flatten, Dense\n",
"from keras.models import Model, load_model\n",
"from keras.callbacks import ModelCheckpoint\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "xrekV6W978l4"
},
"source": [
"### Utils functions"
]
},
{
"cell_type": "code",
"metadata": {
"id": "4LJ5blQR7PUe"
},
"source": [
"\n",
"def resample_classes(df, classColumnName, numberOfInstances):\n",
" #random numberOfInstances elements\n",
" replace = False # with replacement\n",
" fn = lambda obj: obj.loc[np.random.choice(obj.index, numberOfInstances if len(obj) > numberOfInstances else len(obj), replace),:]\n",
" return df.groupby(classColumnName, as_index=False).apply(fn)\n",
" \n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "MtLr35eM753e"
},
"source": [
"## Load Data"
]
},
{
"cell_type": "code",
"metadata": {
"id": "FnbNT4NF7zal",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c2a72d94-c7ae-4e6a-b962-ec4677053555"
},
"source": [
"!wget https://projet.liris.cnrs.fr/geode/EDdA-Classification/datasets/training_set.tsv\n",
"!wget https://projet.liris.cnrs.fr/geode/EDdA-Classification/datasets/test_set.tsv"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"--2022-02-17 19:08:55-- https://projet.liris.cnrs.fr/geode/EDdA-Classification/datasets/training_set.tsv\n",
"Resolving projet.liris.cnrs.fr (projet.liris.cnrs.fr)... 134.214.142.28\n",
"Connecting to projet.liris.cnrs.fr (projet.liris.cnrs.fr)|134.214.142.28|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 175634219 (167M) [text/tab-separated-values]\n",
"Saving to: ‘training_set.tsv’\n",
"\n",
"training_set.tsv 100%[===================>] 167.50M 28.2MB/s in 6.5s \n",
"\n",
"2022-02-17 19:09:02 (25.7 MB/s) - ‘training_set.tsv’ saved [175634219/175634219]\n",
"\n",
"--2022-02-17 19:09:02-- https://projet.liris.cnrs.fr/geode/EDdA-Classification/datasets/test_set.tsv\n",
"Resolving projet.liris.cnrs.fr (projet.liris.cnrs.fr)... 134.214.142.28\n",
"Connecting to projet.liris.cnrs.fr (projet.liris.cnrs.fr)|134.214.142.28|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 42730598 (41M) [text/tab-separated-values]\n",
"Saving to: ‘test_set.tsv’\n",
"\n",
"test_set.tsv 100%[===================>] 40.75M 19.7MB/s in 2.1s \n",
"\n",
"2022-02-17 19:09:05 (19.7 MB/s) - ‘test_set.tsv’ saved [42730598/42730598]\n",
"\n"
]
}
]
Loading
Loading full blame...