Skip to content
Snippets Groups Projects
Commit 1373e8e0 authored by Ludovic Moncla's avatar Ludovic Moncla
Browse files

update

parent 04dd1c35
No related branches found
No related tags found
No related merge requests found
...@@ -57,14 +57,3 @@ def evaluate_model(clf, X_test, y_test, y_pred, valid_y, classes, classesName, p ...@@ -57,14 +57,3 @@ def evaluate_model(clf, X_test, y_test, y_pred, valid_y, classes, classesName, p
plt.savefig(pathSave) plt.savefig(pathSave)
return df, accuracy, weighted_avg return df, accuracy, weighted_avg
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
#y_true = [2, 0, 2, 2, 0, 1]
#y_pred = [0, 0, 2, 2, 0, 2]
#cf_matrix = confusion_matrix(y_true, y_pred)
#sns.heatmap(cf_matrix, annot=True)
#import matplotlib.pyplot as plt
#plt.show()
...@@ -96,44 +96,27 @@ for columnInput in [columnText, 'firstParagraph']: ...@@ -96,44 +96,27 @@ for columnInput in [columnText, 'firstParagraph']:
grid_param_name, grid_param = tmp_grid_params grid_param_name, grid_param = tmp_grid_params
print(clf_name, clf, grid_param_name, grid_param) print(clf_name, clf, grid_param_name, grid_param)
model_file_name = columnInput + '_' +feature_technique_name + '_' + clf_name+ str(minOfInstancePerClass) + '_' + str(maxOfInstancePerClass) +".pkl" model_file_name = columnInput + '_' +feature_technique_name + '_' + clf_name+ str(minOfInstancePerClass) + '_' + str(maxOfInstancePerClass) +".pkl"
if clf_name == 'bayes' :
if feature_technique_name == 'doc2vec': if clf_name != 'bayes' :
continue
else:
t_begin = time.time()
# if model exist
if os.path.isfile(os.path.join('./model', model_file_name)):
with open(model_file_name, 'rb') as file:
clf = pickle.load(file)
else:
#if model not exists we save
with open(Pkl_Filename, 'wb') as file:
clf.fit(train_x, train_y)
pickle.dump(clf, file)
t_end =time.time()
training_time = t_end - t_begin
y_pred = clf.predict(test_x)
else :
clf = GridSearchCV(clf, grid_param, refit = True, verbose = 3) clf = GridSearchCV(clf, grid_param, refit = True, verbose = 3)
t_begin = time.time() else if feature_technique_name == 'doc2vec':
continue
t_begin = time.time()
if os.path.isfile(os.path.join('./model', model_file_name)): if os.path.isfile(os.path.join('./model', model_file_name)):
with open(model_file_name, 'rb') as file: with open(model_file_name, 'rb') as file:
clf = pickle.load(file) clf = pickle.load(file)
else: else:
with open(Pkl_Filename, 'wb') as file: with open(Pkl_Filename, 'wb') as file:
clf.fit(train_x, train_y) clf.fit(train_x, train_y)
pickle.dump(clf, file) pickle.dump(clf, file)
t_end =time.time() t_end =time.time()
training_time = t_end - t_begin training_time = t_end - t_begin
y_pred = clf.predict(test_x) y_pred = clf.predict(test_x)
#evaluate model #evaluate model
file_name_report = columnInput + '_' +feature_technique_name + '_' + clf_name file_name_report = columnInput + '_' +feature_technique_name + '_' + clf_name
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment