The approach, proposed by [Yin et al. (2019)](https://arxiv.org/abs/1909.00161), uses a pre-trained MNLI sequence-pair classifier as an out-of-the-box zero-shot text classifier that actually works pretty well. The idea is to take the sequence we're interested in labeling as the "premise" and to turn each candidate label into a "hypothesis." If the NLI model predicts that the premise "entails" the hypothesis, we take the label to be true. See the code snippet below which demonstrates how easily this can be done with 🤗 Transformers.