Skip to content
Snippets Groups Projects
Commit 5eb0043a authored by Ludovic Moncla's avatar Ludovic Moncla
Browse files

Merge branch 'branch_dev_bert_exp' into 'master'

Branch dev bert exp

See merge request !5
parents 28895891 66234a84
No related branches found
No related tags found
1 merge request!5Branch dev bert exp
This diff is collapsed.
......@@ -21,7 +21,13 @@ In order to run the classifiers, use the following command :
python experimentsClassicClassifiers.py <dataset_tsv_file> <content_column_name> <labels_column_name> <min_sample_per_class> <max_sample_per_class>
In order to run Classification with pre-trained models, use the following command :
cd experiments/
python bert_experiments.py <model_Name> <classifier>
# Acknowledgment
The authors are grateful to the ASLAN project (ANR-10-LABX-0081) of the Université de Lyon, for its financial support within the French program "Investments for the Future" operated by the National Research Agency (ANR).
\ No newline at end of file
The authors are grateful to the ASLAN project (ANR-10-LABX-0081) of the Université de Lyon, for its financial support within the French program "Investments for the Future" operated by the National Research Agency (ANR).
[general]
dataPath = Data/dataframe_with_ensemble_domaine_enccre.csv
columnText = contentWithoutClass
columnClass = ensemble_domaine_enccre
minOfInstancePerClass = 200
maxOfInstancePerClass = 1500
[model]
tokeniser = bert-base-multilingual-cased
#tokeniser = camembert-base
model = bert-base-multilingual-cased
#model = camembert-base
max_len_sequences = 256
batch_size = 32
epochs = 4
pathModel = ' '
modelName = ' '
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import seaborn as sns
def evaluate_bertFineTuning(pred_labels_, true_labels_, encoder):
report = classification_report( pred_labels_, true_labels_, output_dict = True)
classes = [str(e) for e in encoder.transform(encoder.classes_)]
classesName = encoder.classes_
accuracy = report['accuracy']
weighted_avg = report['weighted avg']
precision = []
recall = []
f1 = []
support = []
dff = pd.DataFrame(columns= ['className', 'precision', 'recall', 'f1-score', 'support', 'FP', 'FN', 'TP', 'TN'])
for c in classes:
precision.append(report[c]['precision'])
recall.append(report[c]['recall'])
f1.append(report[c]['f1-score'])
support.append(report[c]['support'])
accuracy = report['accuracy']
weighted_avg = report['weighted avg']
cnf_matrix = confusion_matrix(true_labels_, pred_labels_)
FP = cnf_matrix.sum(axis=0) - np.diag(cnf_matrix)
FN = cnf_matrix.sum(axis=1) - np.diag(cnf_matrix)
TP = np.diag(cnf_matrix)
TN = cnf_matrix.sum() - (FP + FN + TP)
dff['className'] = classesName
dff['precision'] = precision
dff['recall'] = recall
dff['f1-score'] = f1
dff['support'] = support
dff['FP'] = FP
dff['FN'] = FN
dff['TP'] = TP
dff['TN'] = TN
return dff, accuracy, weighted_avg
import pandas as pd
import numpy as np
import torch
import transformers as ppb
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
import statistics
import os
import sys
import argparse
import configparser
from transformers import CamembertModel, CamembertTokenizer
from transformers import FlaubertModel, FlaubertTokenizer
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import seaborn as sns
def evaluate_model(clf, X_test, y_test, y_pred, valid_y, classes, classesName, pathSave):
#classifier, label_list, test_x, valid_y, title = "Confusion matrix"):
precision = []
recall = []
f1 = []
support = []
weighted_avg = None
accuracy = None
df = pd.DataFrame(columns= ['className', 'precision', 'recall', 'f1-score', 'support', 'FP', 'FN', 'TP', 'TN'])
report = classification_report( y_pred, valid_y, output_dict = True)
for c in classes:
precision.append(report[c]['precision'])
recall.append(report[c]['recall'])
f1.append(report[c]['f1-score'])
support.append(report[c]['support'])
accuracy = report['accuracy']
weighted_avg = report['weighted avg']
cnf_matrix = confusion_matrix(valid_y, y_pred)
FP = cnf_matrix.sum(axis=0) - np.diag(cnf_matrix)
FN = cnf_matrix.sum(axis=1) - np.diag(cnf_matrix)
TP = np.diag(cnf_matrix)
TN = cnf_matrix.sum() - (FP + FN + TP)
df['className'] = classesName
df['precision'] = precision
df['recall'] = recall
df['f1-score'] = f1
df['support'] = support
df['FP'] = FP
df['FN'] = FN
df['TP'] = TP
df['TN'] = TN
#disp = plot_confusion_matrix(classifier, test_x, valid_y,
# display_labels= label_list,
# cmap=plt.cm.Blues,
# normalize=None)
#disp.ax_.set_title(title)
#print(title)
#print(disp.confusion_matrix)
#plt.show()
plt.rcParams["font.size"] = 3
plot_confusion_matrix(clf, X_test, y_test)
plt.savefig(pathSave)
return df, accuracy, weighted_avg
def create_dict(df, classColumnName):
return dict(df[classColumnName].value_counts())
def remove_weak_classes(df, classColumnName, threshold):
dictOfClassInstances = create_dict(df,classColumnName)
dictionary = {k: v for k, v in dictOfClassInstances.items() if v >= threshold }
keys = [*dictionary]
df_tmp = df[~ df[classColumnName].isin(keys)]
#df = df[df[columnTarget] not in keys]
#df = df.merge(df_tmp, how = 'outer' ,indicator=True)
df = pd.concat([df,df_tmp]).drop_duplicates(keep=False)
return df
def split_class(df, columnProcessed):
i = 0
new_df = pd.DataFrame(columns= df.columns)
for index, row in df.iterrows():
#cls = re.split(';', row[columnProcessed])
cls = filter(None, row[columnProcessed].split(';'))
cls = list(cls)
#cls = re.findall(r"[\w']+", row [columnProcessed])
r = row
for categ in cls:
r[columnProcessed] = categ
#new_df.append(r, ignore_index = True)
new_df.loc[i] = r
i = i + 1
return new_df
def resample_classes(df, classColumnName, numberOfInstances):
# numberOfInstances first elements
#return df.groupby(classColumnName).apply(lambda x: x[:numberOfInstances][df.columns])
#random numberOfInstances elements
replace = False # with replacement
fn = lambda obj: obj.loc[np.random.choice(obj.index, numberOfInstances if len(obj) > numberOfInstances else len(obj), replace),:]
return df.groupby(classColumnName, as_index=False).apply(fn)
def select_classifier(argument):
classifiers = {
'lr' :LogisticRegression(),
'sgd' :SGDClassifier(),
'svm' :SVC() ,
'decisionTree' :DecisionTreeClassifier(),
'rfc' :RandomForestClassifier(),
'knn' : KNeighborsClassifier()
}
param_grid_svm = {'C':[1,10,100,1000],'gamma':[1,0.1,0.001,0.0001], 'kernel':['linear','rbf']}
param_grid_decisionTree = { 'criterion' : ['gini', 'entropy'], 'max_depth':range(5,10), 'min_samples_split': range(5,10), 'min_samples_leaf': range(1,5) }
param_grid_rfc = { 'n_estimators': [200, 500], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth' : [4,5,6,7,8], 'criterion' :['gini', 'entropy'] }
param_grid_lr = { "penalty":['none',"l2"]}
param_grid_sgd = { "loss" : ["hinge", "log", "squared_hinge", "modified_huber"], "alpha" : [0.0001, 0.001, 0.01, 0.1], "penalty" : ["l2", "l1", "none"], "max_iter" : [500]}
param_grid_knn = {'n_neighbors' : list(range(3,20)), 'weights' : ['uniform', 'distance'], 'metric' : ['euclidean', 'manhattan'] }
grid_params = {
'lr': param_grid_lr,
'sgd': param_grid_sgd ,
'svm': param_grid_svm,
'decisionTree': param_grid_decisionTree,
'rfc': param_grid_rfc ,
'knn': param_grid_knn,
}
return classifiers.get(argument), grid_params.get(argument)
if __name__ == "__main__":
print('ok')
parser = argparse.ArgumentParser()
parser.add_argument("modelName", help="bert or distilBert or camembert or flaubert")
parser.add_argument("classifier", help="lr or knn or rfc or decisionTree or sgd or svm")
args = parser.parse_args()
arg = args.modelName
classifier = args.classifier
config = configparser.ConfigParser()
config.read('parameters.conf')
minOfInstancePerClass = int(config.get('general','minOfInstancePerClass'))
maxOfInstancePerClass = int(config.get('general','maxOfInstancePerClass'))
dataPath = config.get('data','dataPath')
columnText = config.get('data','columnText')
columnClass = config.get('data','columnClass')
if not os.path.exists('reports'):
os.makedirs('reports')
if not os.path.exists(os.path.join('reports', columnClass)):
os.makedirs(os.path.join('reports', columnClass))
dir_name_report = str(minOfInstancePerClass) + '_' + str(maxOfInstancePerClass)
if not os.path.exists(os.path.join('reports', columnClass, dir_name_report)):
os.makedirs(os.path.join('reports', columnClass, dir_name_report))
# read data
print(dataPath)
df = pd.read_csv(dataPath)
df = remove_weak_classes(df, columnClass, minOfInstancePerClass)
df = resample_classes(df, columnClass, maxOfInstancePerClass)
print(df.head())
print(df.shape)
#encode labels
df = df[df[columnClass] != 'unclassified']
y = df[columnClass]
encoder = preprocessing.LabelEncoder()
y = encoder.fit_transform(y)
sentences = df['firstParagraph']
labels = y.tolist()
# Features Extraction
#Bert
model_class_bert, tokenizer_class_bert, pretrained_weights_bert = (ppb.BertModel, ppb.BertTokenizer, 'bert-base-uncased')
tokenizer_bert = tokenizer_class_bert.from_pretrained(pretrained_weights_bert)
model_bert = model_class_bert.from_pretrained(pretrained_weights_bert)
#DistilBert
model_class_distilBert, tokenizer_class_distilBert, pretrained_weights_distilBert = (ppb.DistilBertModel, ppb.DistilBertTokenizer, 'distilbert-base-uncased')
tokenizer_distilBert = tokenizer_class_distilBert.from_pretrained(pretrained_weights_distilBert)
model_distilBert = model_class_distilBert.from_pretrained(pretrained_weights_distilBert)
#Camembert
camembert_tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-base")
camembert = CamembertModel.from_pretrained("camembert/camembert-base")
#Flaubert
flaubert, log = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased', output_loading_info=True)
flaubert_tokenizer = FlaubertTokenizer.from_pretrained('flaubert/flaubert_base_cased', do_lowercase=False)
models = {
'bert': model_bert,
'distilbert': model_distilBert ,
'camembert': camembert,
'flaubert': flaubert
}
tokenizers = {
'bert': tokenizer_bert,
'distilbert': tokenizer_distilBert ,
'camembert': camembert_tokenizer,
'flaubert': flaubert_tokenizer
}
if arg == 'flaubert':
model = flaubert
tokenizer = flaubert_tokenizer
elif arg == 'camembert':
model = camembert
tokenizer = camembert_tokenizer
elif arg == 'distilbert':
model = model_distilBert
tokenizer = tokenizer_distilBert
elif arg == 'bert':
model = model_bert
tokenizer = tokenizer_bert
tokenized = sentences.apply((lambda x: tokenizer.encode(x, add_special_tokens=True, max_length = 512, truncation = True)))
# padding the sequences
max_len = 0
for i in tokenized.values:
if len(i) > max_len:
max_len = len(i)
padded = np.array([i + [0]*(max_len-len(i)) for i in tokenized.values])
# attention mask
attention_mask = np.where(padded != 0, 1, 0)
# get features
input_ids = torch.tensor(padded)
attention_mask = torch.tensor(attention_mask)
with torch.no_grad():
last_hidden_states = model(input_ids, attention_mask=attention_mask)
features = last_hidden_states[0][:,0,:].numpy()
print(features.shape)
train_x, test_x, train_y, test_y = train_test_split(features, y, test_size=0.33, random_state=42, stratify = y )
# classification
clf, grid_param = select_classifier(classifier)
print(features)
clf = GridSearchCV(clf, grid_param, refit = True, verbose = 3)
clf.fit(train_x, train_y)
#evaluation
y_pred = clf.predict(test_x)
report, accuracy, weighted_avg = evaluate_model(clf, test_x, test_y, y_pred, test_y, [str(e) for e in encoder.transform(encoder.classes_)], encoder.classes_, os.path.join('reports', columnClass, dir_name_report, arg+ '_' + classifier+'.pdf'))
report.to_csv(os.path.join('reports', columnClass, dir_name_report, arg + '_' + classifier +'.csv'))
with open(os.path.join('reports', columnClass, dir_name_report, arg + '_' + classifier+'.txt'), 'w') as f:
sys.stdout = f # Change the standard output to the file we created.
print('accuracy : {}'.format(accuracy))
print('weighted_Precision : {}'.format(weighted_avg['precision']))
print('weighted_Recall : {}'.format(weighted_avg['recall']))
print('weighted_F-score : {}'.format(weighted_avg['f1-score']))
print('weighted_Support : {}'.format(weighted_avg['support']))
print(dict(zip(encoder.classes_, encoder.transform(encoder.classes_))))
#sys.stdout = sys.stdout # Reset the standard output to its original value
sys.stdout = sys.__stdout__
[general]
minOfInstancePerClass = 1200
maxOfInstancePerClass = 7
[data]
dataPath = ../Data/dataframe_with_ensemble_domaine_enccre.csv
columnText = contentWithoutClass
columnClass = ensemble_domaine_enccre
transformers==4.3.2
sentencepiece
sklearn
pandas
numpy
torch==1.8.1
main.py 0 → 100644
import pandas as pd
import numpy as np
import configparser
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from training_bertFineTuning import training_bertFineTuning
from predict_bertFineTuning import predict_class_bertFineTuning, generate_prediction_dataloader
from evaluate_bertFineTuning import evaluate_bertFineTuning
def create_dict(df, classColumnName):
return dict(df[classColumnName].value_counts())
def remove_weak_classes(df, classColumnName, threshold):
dictOfClassInstances = create_dict(df,classColumnName)
dictionary = {k: v for k, v in dictOfClassInstances.items() if v >= threshold }
keys = [*dictionary]
df_tmp = df[~ df[classColumnName].isin(keys)]
df = pd.concat([df,df_tmp]).drop_duplicates(keep=False)
return df
def resample_classes(df, classColumnName, numberOfInstances):
#random numberOfInstances elements
replace = False # with replacement
fn = lambda obj: obj.loc[np.random.choice(obj.index, numberOfInstances if len(obj) > numberOfInstances else len(obj), replace),:]
return df.groupby(classColumnName, as_index=False).apply(fn)
def main():
config = configparser.ConfigParser()
config.read('bert_settings.conf')
dataPath = config.get('general','dataPath')
columnText = config.get('general','columnText')
columnClass = config.get('general','columnClass')
minOfInstancePerClass = int(config.get('general','minOfInstancePerClass'))
maxOfInstancePerClass = int(config.get('general','maxOfInstancePerClass'))
chosen_tokeniser = config.get('model','tokeniser')
chosen_model = config.get('model','model')
max_len = int(config.get('model','max_len_sequences'))
batch_size = int(config.get('model','batch_size'))
epochs = int(config.get('model','epochs'))
df = pd.read_csv(dataPath)
df = remove_weak_classes(df, columnClass, minOfInstancePerClass)
df = resample_classes(df, columnClass, maxOfInstancePerClass)
df = df[df[columnClass] != 'unclassified']
y = df[columnClass]
numberOfClasses = y.nunique()
encoder = preprocessing.LabelEncoder()
y = encoder.fit_transform(y)
train_x, test_x, train_y, test_y = train_test_split(df, y, test_size=0.33, random_state=42, stratify = y )
sentences = train_x[columnText].values
labels = train_y.tolist()
#call train method
model = training_bertFineTuning(chosen_model, sentences, labels, max_len, batch_size, epochs)
#save the model
model_save_name = config.get('model','modelName')
path = config.get('model','path')
torch.save(model, os.path.join(path,model_save_name))
#print the model parameters
params = list(model.named_parameters())
print('The BERT model has {:} different named parameters.\n'.format(len(params)))
print('==== Embedding Layer ====\n')
for p in params[0:5]:
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
print('\n==== First Transformer ====\n')
for p in params[5:21]:
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
print('\n==== Output Layer ====\n')
for p in params[-4:]:
print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size()))))
#call predict method
prediction_dataloader = generate_prediction_dataloader(chosen_model, sentences_to_predict, labels, max_len, batch_size = 32)
predicted_class, true_labels = predict_class_bertFineTuning(chosen_model, model, prediction_dataloader)
#call Evaluate
result_df, accuracy , weighted_avg = evaluate_bertFineTuning(predicted_class, true_labels, encoder)
print(result_df)
print(accuracy)
print(weighted_avg)
if __name__ == "__main__":
main()
import torch
import pandas as pd
import numpy as np
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import BertTokenizer, CamembertTokenizer
def generate_prediction_dataloader(chosen_model, sentences_to_predict, labels, batch_size = 32):
if chosen_model == 'bert-base-multilingual-cased' :
print('Loading Bert Tokenizer...')
tokenizer = BertTokenizer.from_pretrained(chosen_model, do_lower_case=True)
elif chosen_model == 'camembert-base':
print('Loading Camembert Tokenizer...')
tokenizer = CamembertTokenizer.from_pretrained(chosen_model , do_lower_case=True)
# Tokenize all of the sentences and map the tokens to thier word IDs.
input_ids_test = []
# For every sentence...
for sent in sentences_to_predict:
# `encode` will:
# (1) Tokenize the sentence.
# (2) Prepend the `[CLS]` token to the start.
# (3) Append the `[SEP]` token to the end.
# (4) Map tokens to their IDs.
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
)
input_ids_test.append(encoded_sent)
# Pad our input tokens
padded_test = []
for i in input_ids_test:
if len(i) > max_len:
padded_test.extend([i[:max_len]])
else:
padded_test.extend([i + [0] * (max_len - len(i))])
input_ids_test = np.array(padded_test)
# Create attention masks
attention_masks = []
# Create a mask of 1s for each token followed by 0s for padding
for seq in input_ids_test:
seq_mask = [float(i>0) for i in seq]
attention_masks.append(seq_mask)
# Convert to tensors.
prediction_inputs = torch.tensor(input_ids_test)
prediction_masks = torch.tensor(attention_masks)
prediction_labels = torch.tensor(labels)
# Set the batch size.
batch_size = 32
# Create the DataLoader.
prediction_data = TensorDataset(prediction_inputs, prediction_masks, prediction_labels)
prediction_sampler = SequentialSampler(prediction_data)
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size)
return prediction_dataloader
def predict_class_bertFineTuning(model, sentences_to_predict_dataloader):
# If there's a GPU available...
if torch.cuda.is_available():
# Tell PyTorch to use the GPU.
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
# If not...
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
# Put model in evaluation mode
model.eval()
# Tracking variables
predictions_test , true_labels = [], []
# Predict
for batch in prediction_dataloader:
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from the dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and
# speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
outputs = model(b_input_ids, token_type_ids=None,
attention_mask=b_input_mask)
logits = outputs[0]
#print(logits)
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
#print(logits)
# Store predictions and true labels
predictions_test.append(logits)
true_labels.append(label_ids)
print(' DONE.')
pred_labels = []
for i in range(len(true_labels)):
# The predictions for this batch are a 2-column ndarray (one column for "0"
# and one column for "1"). Pick the label with the highest value and turn this
# in to a list of 0s and 1s.
pred_labels_i = np.argmax(predictions_test[i], axis=1).flatten()
pred_labels.append(pred_labels_i)
pred_labels_ = [item for sublist in pred_labels for item in sublist]
true_labels_ = [item for sublist in true_labels for item in sublist]
return predictions_test_, true_labels_
def predict_instance_bertFineTuning(chosen_model, model, sentences_to_predict):
if chosen_model == 'bert-base-multilingual-cased' :
print('Loading Bert Tokenizer...')
tokenizer = BertTokenizer.from_pretrained(chosen_model, do_lower_case=True)
elif chosen_model == 'camembert-base':
print('Loading Camembert Tokenizer...')
tokenizer = CamembertTokenizer.from_pretrained(chosen_model , do_lower_case=True)
# Tokenize all of the sentences and map the tokens to thier word IDs.
input_ids_test = []
# For every sentence...
for sent in sentences_to_predict:
# `encode` will:
# (1) Tokenize the sentence.
# (2) Prepend the `[CLS]` token to the start.
# (3) Append the `[SEP]` token to the end.
# (4) Map tokens to their IDs.
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
)
input_ids_test.append(encoded_sent)
with torch.no_grad():
# Forward pass, calculate logit predictions
outputs = model(b_input_ids, token_type_ids=None,
attention_mask=b_input_mask)
logits = outputs[0]
import torch
import pandas as pd
import numpy as np
from sklearn import preprocessing
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import BertTokenizer, CamembertTokenizer
from transformers import BertForSequenceClassification, AdamW, BertConfig, CamembertForSequenceClassification
from transformers import get_linear_schedule_with_warmup
import time
import datetime
import random
import os
def flat_accuracy(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
def format_time(elapsed):
'''
Takes a time in seconds and returns a string hh:mm:ss
'''
# Round to the nearest second.
elapsed_rounded = int(round((elapsed)))
# Format as hh:mm:ss
return str(datetime.timedelta(seconds=elapsed_rounded))
def training_bertFineTuning(chosen_model, sentences, labels, max_len, batch_size, epochs = 4):
# If there's a GPU available...
if torch.cuda.is_available():
# Tell PyTorch to use the GPU.
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
# If not...
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
############################################################################################################
########################## Model: Tokenization & Input Formatting ###################################################################
###########################################################################################################
if chosen_model == 'bert-base-multilingual-cased' :
print('Loading Bert Tokenizer...')
tokenizer = BertTokenizer.from_pretrained(chosen_model, do_lower_case=True)
elif chosen_model == 'camembert-base':
print('Loading Camembert Tokenizer...')
tokenizer = CamembertTokenizer.from_pretrained(chosen_model , do_lower_case=True)
# Tokenize all of the sentences and map the tokens to thier word IDs.
input_ids = []
# For every sentence...
for sent in sentences:
# `encode` will:
# (1) Tokenize the sentence.
# (2) Prepend the `[CLS]` token to the start.
# (3) Append the `[SEP]` token to the end.
# (4) Map tokens to their IDs.
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
# This function also supports truncation and conversion
# to pytorch tensors, but I need to do padding, so I
# can't use these features.
#max_length = 128, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
)
# Add the encoded sentence to the list.
input_ids.append(encoded_sent)
padded = []
for i in input_ids:
if len(i) > max_len:
padded.extend([i[:max_len]])
else:
padded.extend([i + [0] * (max_len - len(i))])
padded = np.array(padded)
# Create attention masks
attention_masks = []
# For each sentence...
for sent in padded:
# Create the attention mask.
# - If a token ID is 0, then it's padding, set the mask to 0.
# - If a token ID is > 0, then it's a real token, set the mask to 1.
att_mask = [int(token_id > 0) for token_id in sent]
# Store the attention mask for this sentence.
attention_masks.append(att_mask)
# Use 90% for training and 10% for validation.
train_inputs, validation_inputs, train_labels, validation_labels = train_test_split(padded, labels, random_state=2018, test_size=0.1, stratify = labels )
# Do the same for the masks.
train_masks, validation_masks, _, _ = train_test_split(attention_masks, labels, random_state=2018, test_size=0.1, stratify = labels)
# Convert all inputs and labels into torch tensors, the required datatype
# for my model.
train_inputs = torch.tensor(train_inputs)
validation_inputs = torch.tensor(validation_inputs)
train_labels = torch.tensor(train_labels)
validation_labels = torch.tensor(validation_labels)
train_masks = torch.tensor(train_masks)
validation_masks = torch.tensor(validation_masks)
# The DataLoader needs to know the batch size for training, so I specify it here.
# For fine-tuning BERT on a specific task, the authors recommend a batch size of
# 16 or 32.
# Create the DataLoader for training set.
train_data = TensorDataset(train_inputs, train_masks, train_labels)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
# Create the DataLoader for validation set.
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels)
validation_sampler = SequentialSampler(validation_data)
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=batch_size)
print(' Selecting a model .....')
numberOfClasses = len(set(labels))
# Load BertForSequenceClassification, the pretrained BERT model with a single
# linear classification layer on top.
if chosen_model == 'bert-base-multilingual-cased':
model = BertForSequenceClassification.from_pretrained(
chosen_model, # Use the 12-layer BERT model, with an uncased vocab.
num_labels = numberOfClasses, # The number of output labels--2 for binary classification.
# You can increase this for multi-class tasks.
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
elif chosen_model == 'camembert-base':
model = CamembertForSequenceClassification.from_pretrained(
chosen_model, # Use the 12-layer BERT model, with an uncased vocab.
num_labels = numberOfClasses, # The number of output labels--2 for binary classification.
# You can increase this for multi-class tasks.
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
# Tell pytorch to run this model on the GPU.
model.cuda()
#Note: AdamW is a class from the huggingface library (as opposed to pytorch)
# I believe the 'W' stands for 'Weight Decay fix"
optimizer = AdamW(model.parameters(),
lr = 2e-5, # args.learning_rate - default is 5e-5, our notebook had 2e-5
eps = 1e-8 # args.adam_epsilon - default is 1e-8.
)
# Total number of training steps is number of batches * number of epochs.
total_steps = len(train_dataloader) * epochs
# Create the learning rate scheduler.
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps = 0, # Default value in run_glue.py
num_training_steps = total_steps)
# This training code is based on the `run_glue.py` script here:
# https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L128
# Set the seed value all over the place to make this reproducible.
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
# Store the average loss after each epoch so I can plot them.
loss_values = []
# For each epoch...
for epoch_i in range(0, epochs):
# ========================================
# Training
# ========================================
# Perform one full pass over the training set.
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
print('Training...')
# Measure how long the training epoch takes.
t0 = time.time()
# Reset the total loss for this epoch.
total_loss = 0
# Put the model into training mode.
model.train()
# For each batch of training data...
for step, batch in enumerate(train_dataloader):
# Progress update every 40 batches.
if step % 40 == 0 and not step == 0:
# Calculate elapsed time in minutes.
elapsed = format_time(time.time() - t0)
# Report progress.
print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))
# Unpack this training batch from the dataloader.
#
# As I unpack the batch, I'll also copy each tensor to the GPU using the
# `to` method.
#
# `batch` contains three pytorch tensors:
# [0]: input ids
# [1]: attention masks
# [2]: labels
b_input_ids = batch[0].to(device)
b_input_mask = batch[1].to(device)
b_labels = batch[2].to(device)
# Always clear any previously calculated gradients before performing a
# backward pass. PyTorch doesn't do this automatically because
# accumulating the gradients is "convenient while training RNNs".
# (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch)
model.zero_grad()
# Perform a forward pass (evaluate the model on this training batch).
# This will return the loss (rather than the model output) because I
# have provided the `labels`.
# The documentation for this `model` function is here:
# https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification
outputs = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
# The call to `model` always returns a tuple, so I need to pull the
# loss value out of the tuple.
loss = outputs[0]
# Accumulate the training loss over all of the batches so that I can
# calculate the average loss at the end. `loss` is a Tensor containing a
# single value; the `.item()` function just returns the Python value
# from the tensor.
total_loss += loss.item()
# Perform a backward pass to calculate the gradients.
loss.backward()
# Clip the norm of the gradients to 1.0.
# This is to help prevent the "exploding gradients" problem.
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# Update parameters and take a step using the computed gradient.
# The optimizer dictates the "update rule"--how the parameters are
# modified based on their gradients, the learning rate, etc.
optimizer.step()
# Update the learning rate.
scheduler.step()
# Calculate the average loss over the training data.
avg_train_loss = total_loss / len(train_dataloader)
# Store the loss value for plotting the learning curve.
loss_values.append(avg_train_loss)
print("")
print(" Average training loss: {0:.2f}".format(avg_train_loss))
print(" Training epoch took: {:}".format(format_time(time.time() - t0)))
# ========================================
# Validation
# ========================================
# After the completion of each training epoch, measure the performance on
# the validation set.
print("")
print("Running Validation...")
t0 = time.time()
# Put the model in evaluation mode--the dropout layers behave differently
# during evaluation.
model.eval()
# Tracking variables
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
# Evaluate data for one epoch
for batch in validation_dataloader:
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and
# speeding up validation
with torch.no_grad():
# Forward pass, calculate logit predictions.
# This will return the logits rather than the loss because we have
# not provided labels.
# token_type_ids is the same as the "segment ids", which
# differentiates sentence 1 and 2 in 2-sentence tasks.
# The documentation for this `model` function is here:
# https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification
outputs = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask)
# Get the "logits" output by the model. The "logits" are the output
# values prior to applying an activation function like the softmax.
logits = outputs[0]
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
# Calculate the accuracy for this batch of test sentences.
tmp_eval_accuracy = flat_accuracy(logits, label_ids)
# Accumulate the total accuracy.
eval_accuracy += tmp_eval_accuracy
# Track the number of batches
nb_eval_steps += 1
# Report the final accuracy for this validation run.
print(" Accuracy: {0:.2f}".format(eval_accuracy/nb_eval_steps))
print(" Validation took: {:}".format(format_time(time.time() - t0)))
print("")
print("Training complete!")
return model
'''print('Saving Model....')
model_save_name = config.get('model','modelName')
path = config.get('model','path')
#torch.save(model.state_dict(), os.path.join(path,model_save_name))
torch.save(model, os.path.join(path,model_save_name))'''
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment