Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
EDdA Classification
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Projet GEODE
EDdA Classification
Commits
ca1e73a7
Commit
ca1e73a7
authored
2 years ago
by
Ludovic Moncla
Browse files
Options
Downloads
Patches
Plain Diff
Delete bert_experiments.py
parent
9611e3ca
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
experiments/bert_experiments.py
+0
-349
0 additions, 349 deletions
experiments/bert_experiments.py
with
0 additions
and
349 deletions
experiments/bert_experiments.py
deleted
100644 → 0
+
0
−
349
View file @
9611e3ca
import
pandas
as
pd
import
numpy
as
np
import
torch
import
transformers
as
ppb
from
sklearn.model_selection
import
train_test_split
from
sklearn
import
preprocessing
import
statistics
import
os
import
sys
import
argparse
import
configparser
from
transformers
import
CamembertModel
,
CamembertTokenizer
from
transformers
import
FlaubertModel
,
FlaubertTokenizer
from
sklearn.svm
import
SVC
from
sklearn.tree
import
DecisionTreeClassifier
from
sklearn.ensemble
import
RandomForestClassifier
from
sklearn.linear_model
import
LogisticRegression
from
sklearn.linear_model
import
SGDClassifier
from
sklearn.neighbors
import
KNeighborsClassifier
from
sklearn.model_selection
import
GridSearchCV
import
matplotlib.pyplot
as
plt
from
sklearn.metrics
import
plot_confusion_matrix
from
sklearn.metrics
import
confusion_matrix
from
sklearn.metrics
import
classification_report
import
seaborn
as
sns
def
evaluate_model
(
clf
,
X_test
,
y_test
,
y_pred
,
valid_y
,
classes
,
classesName
,
pathSave
):
#classifier, label_list, test_x, valid_y, title = "Confusion matrix"):
precision
=
[]
recall
=
[]
f1
=
[]
support
=
[]
weighted_avg
=
None
accuracy
=
None
df
=
pd
.
DataFrame
(
columns
=
[
'
className
'
,
'
precision
'
,
'
recall
'
,
'
f1-score
'
,
'
support
'
,
'
FP
'
,
'
FN
'
,
'
TP
'
,
'
TN
'
])
report
=
classification_report
(
y_pred
,
valid_y
,
output_dict
=
True
)
for
c
in
classes
:
precision
.
append
(
report
[
c
][
'
precision
'
])
recall
.
append
(
report
[
c
][
'
recall
'
])
f1
.
append
(
report
[
c
][
'
f1-score
'
])
support
.
append
(
report
[
c
][
'
support
'
])
accuracy
=
report
[
'
accuracy
'
]
weighted_avg
=
report
[
'
weighted avg
'
]
cnf_matrix
=
confusion_matrix
(
valid_y
,
y_pred
)
FP
=
cnf_matrix
.
sum
(
axis
=
0
)
-
np
.
diag
(
cnf_matrix
)
FN
=
cnf_matrix
.
sum
(
axis
=
1
)
-
np
.
diag
(
cnf_matrix
)
TP
=
np
.
diag
(
cnf_matrix
)
TN
=
cnf_matrix
.
sum
()
-
(
FP
+
FN
+
TP
)
df
[
'
className
'
]
=
classesName
df
[
'
precision
'
]
=
precision
df
[
'
recall
'
]
=
recall
df
[
'
f1-score
'
]
=
f1
df
[
'
support
'
]
=
support
df
[
'
FP
'
]
=
FP
df
[
'
FN
'
]
=
FN
df
[
'
TP
'
]
=
TP
df
[
'
TN
'
]
=
TN
#disp = plot_confusion_matrix(classifier, test_x, valid_y,
# display_labels= label_list,
# cmap=plt.cm.Blues,
# normalize=None)
#disp.ax_.set_title(title)
#print(title)
#print(disp.confusion_matrix)
#plt.show()
plt
.
rcParams
[
"
font.size
"
]
=
3
plot_confusion_matrix
(
clf
,
X_test
,
y_test
)
plt
.
savefig
(
pathSave
)
return
df
,
accuracy
,
weighted_avg
def
create_dict
(
df
,
classColumnName
):
return
dict
(
df
[
classColumnName
].
value_counts
())
def
remove_weak_classes
(
df
,
classColumnName
,
threshold
):
dictOfClassInstances
=
create_dict
(
df
,
classColumnName
)
dictionary
=
{
k
:
v
for
k
,
v
in
dictOfClassInstances
.
items
()
if
v
>=
threshold
}
keys
=
[
*
dictionary
]
df_tmp
=
df
[
~
df
[
classColumnName
].
isin
(
keys
)]
#df = df[df[columnTarget] not in keys]
#df = df.merge(df_tmp, how = 'outer' ,indicator=True)
df
=
pd
.
concat
([
df
,
df_tmp
]).
drop_duplicates
(
keep
=
False
)
return
df
def
split_class
(
df
,
columnProcessed
):
i
=
0
new_df
=
pd
.
DataFrame
(
columns
=
df
.
columns
)
for
index
,
row
in
df
.
iterrows
():
#cls = re.split(';', row[columnProcessed])
cls
=
filter
(
None
,
row
[
columnProcessed
].
split
(
'
;
'
))
cls
=
list
(
cls
)
#cls = re.findall(r"[\w']+", row [columnProcessed])
r
=
row
for
categ
in
cls
:
r
[
columnProcessed
]
=
categ
#new_df.append(r, ignore_index = True)
new_df
.
loc
[
i
]
=
r
i
=
i
+
1
return
new_df
def
resample_classes
(
df
,
classColumnName
,
numberOfInstances
):
# numberOfInstances first elements
#return df.groupby(classColumnName).apply(lambda x: x[:numberOfInstances][df.columns])
#random numberOfInstances elements
replace
=
False
# with replacement
fn
=
lambda
obj
:
obj
.
loc
[
np
.
random
.
choice
(
obj
.
index
,
numberOfInstances
if
len
(
obj
)
>
numberOfInstances
else
len
(
obj
),
replace
),:]
return
df
.
groupby
(
classColumnName
,
as_index
=
False
).
apply
(
fn
)
def
select_classifier
(
argument
):
classifiers
=
{
'
lr
'
:
LogisticRegression
(),
'
sgd
'
:
SGDClassifier
(),
'
svm
'
:
SVC
()
,
'
decisionTree
'
:
DecisionTreeClassifier
(),
'
rfc
'
:
RandomForestClassifier
(),
'
knn
'
:
KNeighborsClassifier
()
}
param_grid_svm
=
{
'
C
'
:[
1
,
10
,
100
,
1000
],
'
gamma
'
:[
1
,
0.1
,
0.001
,
0.0001
],
'
kernel
'
:[
'
linear
'
,
'
rbf
'
]}
param_grid_decisionTree
=
{
'
criterion
'
:
[
'
gini
'
,
'
entropy
'
],
'
max_depth
'
:
range
(
5
,
10
),
'
min_samples_split
'
:
range
(
5
,
10
),
'
min_samples_leaf
'
:
range
(
1
,
5
)
}
param_grid_rfc
=
{
'
n_estimators
'
:
[
200
,
500
],
'
max_features
'
:
[
'
auto
'
,
'
sqrt
'
,
'
log2
'
],
'
max_depth
'
:
[
4
,
5
,
6
,
7
,
8
],
'
criterion
'
:[
'
gini
'
,
'
entropy
'
]
}
param_grid_lr
=
{
"
penalty
"
:[
'
none
'
,
"
l2
"
]}
param_grid_sgd
=
{
"
loss
"
:
[
"
hinge
"
,
"
log
"
,
"
squared_hinge
"
,
"
modified_huber
"
],
"
alpha
"
:
[
0.0001
,
0.001
,
0.01
,
0.1
],
"
penalty
"
:
[
"
l2
"
,
"
l1
"
,
"
none
"
],
"
max_iter
"
:
[
500
]}
param_grid_knn
=
{
'
n_neighbors
'
:
list
(
range
(
3
,
20
)),
'
weights
'
:
[
'
uniform
'
,
'
distance
'
],
'
metric
'
:
[
'
euclidean
'
,
'
manhattan
'
]
}
grid_params
=
{
'
lr
'
:
param_grid_lr
,
'
sgd
'
:
param_grid_sgd
,
'
svm
'
:
param_grid_svm
,
'
decisionTree
'
:
param_grid_decisionTree
,
'
rfc
'
:
param_grid_rfc
,
'
knn
'
:
param_grid_knn
,
}
return
classifiers
.
get
(
argument
),
grid_params
.
get
(
argument
)
if
__name__
==
"
__main__
"
:
print
(
'
ok
'
)
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"
modelName
"
,
help
=
"
bert or distilBert or camembert or flaubert
"
)
parser
.
add_argument
(
"
classifier
"
,
help
=
"
lr or knn or rfc or decisionTree or sgd or svm
"
)
args
=
parser
.
parse_args
()
arg
=
args
.
modelName
classifier
=
args
.
classifier
config
=
configparser
.
ConfigParser
()
config
.
read
(
'
parameters.conf
'
)
minOfInstancePerClass
=
int
(
config
.
get
(
'
general
'
,
'
minOfInstancePerClass
'
))
maxOfInstancePerClass
=
int
(
config
.
get
(
'
general
'
,
'
maxOfInstancePerClass
'
))
dataPath
=
config
.
get
(
'
data
'
,
'
dataPath
'
)
columnText
=
config
.
get
(
'
data
'
,
'
columnText
'
)
columnClass
=
config
.
get
(
'
data
'
,
'
columnClass
'
)
if
not
os
.
path
.
exists
(
'
reports
'
):
os
.
makedirs
(
'
reports
'
)
if
not
os
.
path
.
exists
(
os
.
path
.
join
(
'
reports
'
,
columnClass
)):
os
.
makedirs
(
os
.
path
.
join
(
'
reports
'
,
columnClass
))
dir_name_report
=
str
(
minOfInstancePerClass
)
+
'
_
'
+
str
(
maxOfInstancePerClass
)
if
not
os
.
path
.
exists
(
os
.
path
.
join
(
'
reports
'
,
columnClass
,
dir_name_report
)):
os
.
makedirs
(
os
.
path
.
join
(
'
reports
'
,
columnClass
,
dir_name_report
))
# read data
print
(
dataPath
)
df
=
pd
.
read_csv
(
dataPath
)
df
=
remove_weak_classes
(
df
,
columnClass
,
minOfInstancePerClass
)
df
=
resample_classes
(
df
,
columnClass
,
maxOfInstancePerClass
)
print
(
df
.
head
())
print
(
df
.
shape
)
#encode labels
df
=
df
[
df
[
columnClass
]
!=
'
unclassified
'
]
y
=
df
[
columnClass
]
encoder
=
preprocessing
.
LabelEncoder
()
y
=
encoder
.
fit_transform
(
y
)
sentences
=
df
[
'
firstParagraph
'
]
labels
=
y
.
tolist
()
# Features Extraction
#Bert
model_class_bert
,
tokenizer_class_bert
,
pretrained_weights_bert
=
(
ppb
.
BertModel
,
ppb
.
BertTokenizer
,
'
bert-base-uncased
'
)
tokenizer_bert
=
tokenizer_class_bert
.
from_pretrained
(
pretrained_weights_bert
)
model_bert
=
model_class_bert
.
from_pretrained
(
pretrained_weights_bert
)
#DistilBert
model_class_distilBert
,
tokenizer_class_distilBert
,
pretrained_weights_distilBert
=
(
ppb
.
DistilBertModel
,
ppb
.
DistilBertTokenizer
,
'
distilbert-base-uncased
'
)
tokenizer_distilBert
=
tokenizer_class_distilBert
.
from_pretrained
(
pretrained_weights_distilBert
)
model_distilBert
=
model_class_distilBert
.
from_pretrained
(
pretrained_weights_distilBert
)
#Camembert
camembert_tokenizer
=
CamembertTokenizer
.
from_pretrained
(
"
camembert/camembert-base
"
)
camembert
=
CamembertModel
.
from_pretrained
(
"
camembert/camembert-base
"
)
#Flaubert
flaubert
,
log
=
FlaubertModel
.
from_pretrained
(
'
flaubert/flaubert_base_cased
'
,
output_loading_info
=
True
)
flaubert_tokenizer
=
FlaubertTokenizer
.
from_pretrained
(
'
flaubert/flaubert_base_cased
'
,
do_lowercase
=
False
)
models
=
{
'
bert
'
:
model_bert
,
'
distilbert
'
:
model_distilBert
,
'
camembert
'
:
camembert
,
'
flaubert
'
:
flaubert
}
tokenizers
=
{
'
bert
'
:
tokenizer_bert
,
'
distilbert
'
:
tokenizer_distilBert
,
'
camembert
'
:
camembert_tokenizer
,
'
flaubert
'
:
flaubert_tokenizer
}
if
arg
==
'
flaubert
'
:
model
=
flaubert
tokenizer
=
flaubert_tokenizer
elif
arg
==
'
camembert
'
:
model
=
camembert
tokenizer
=
camembert_tokenizer
elif
arg
==
'
distilbert
'
:
model
=
model_distilBert
tokenizer
=
tokenizer_distilBert
elif
arg
==
'
bert
'
:
model
=
model_bert
tokenizer
=
tokenizer_bert
tokenized
=
sentences
.
apply
((
lambda
x
:
tokenizer
.
encode
(
x
,
add_special_tokens
=
True
,
max_length
=
512
,
truncation
=
True
)))
# padding the sequences
max_len
=
0
for
i
in
tokenized
.
values
:
if
len
(
i
)
>
max_len
:
max_len
=
len
(
i
)
padded
=
np
.
array
([
i
+
[
0
]
*
(
max_len
-
len
(
i
))
for
i
in
tokenized
.
values
])
# attention mask
attention_mask
=
np
.
where
(
padded
!=
0
,
1
,
0
)
# get features
input_ids
=
torch
.
tensor
(
padded
)
attention_mask
=
torch
.
tensor
(
attention_mask
)
with
torch
.
no_grad
():
last_hidden_states
=
model
(
input_ids
,
attention_mask
=
attention_mask
)
features
=
last_hidden_states
[
0
][:,
0
,:].
numpy
()
print
(
features
.
shape
)
train_x
,
test_x
,
train_y
,
test_y
=
train_test_split
(
features
,
y
,
test_size
=
0.33
,
random_state
=
42
,
stratify
=
y
)
# classification
clf
,
grid_param
=
select_classifier
(
classifier
)
print
(
features
)
clf
=
GridSearchCV
(
clf
,
grid_param
,
refit
=
True
,
verbose
=
3
)
clf
.
fit
(
train_x
,
train_y
)
#evaluation
y_pred
=
clf
.
predict
(
test_x
)
report
,
accuracy
,
weighted_avg
=
evaluate_model
(
clf
,
test_x
,
test_y
,
y_pred
,
test_y
,
[
str
(
e
)
for
e
in
encoder
.
transform
(
encoder
.
classes_
)],
encoder
.
classes_
,
os
.
path
.
join
(
'
reports
'
,
columnClass
,
dir_name_report
,
arg
+
'
_
'
+
classifier
+
'
.pdf
'
))
report
.
to_csv
(
os
.
path
.
join
(
'
reports
'
,
columnClass
,
dir_name_report
,
arg
+
'
_
'
+
classifier
+
'
.csv
'
))
with
open
(
os
.
path
.
join
(
'
reports
'
,
columnClass
,
dir_name_report
,
arg
+
'
_
'
+
classifier
+
'
.txt
'
),
'
w
'
)
as
f
:
sys
.
stdout
=
f
# Change the standard output to the file we created.
print
(
'
accuracy : {}
'
.
format
(
accuracy
))
print
(
'
weighted_Precision : {}
'
.
format
(
weighted_avg
[
'
precision
'
]))
print
(
'
weighted_Recall : {}
'
.
format
(
weighted_avg
[
'
recall
'
]))
print
(
'
weighted_F-score : {}
'
.
format
(
weighted_avg
[
'
f1-score
'
]))
print
(
'
weighted_Support : {}
'
.
format
(
weighted_avg
[
'
support
'
]))
print
(
dict
(
zip
(
encoder
.
classes_
,
encoder
.
transform
(
encoder
.
classes_
))))
#sys.stdout = sys.stdout # Reset the standard output to its original value
sys
.
stdout
=
sys
.
__stdout__
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment