Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
EDdA Classification
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Projet GEODE
EDdA Classification
Merge requests
!4
Branch dev vectorization feature
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Branch dev vectorization feature
branch_dev_vectorizationFeature
into
master
Overview
0
Commits
4
Pipelines
0
Changes
4
Merged
Ludovic Moncla
requested to merge
branch_dev_vectorizationFeature
into
master
4 years ago
Overview
0
Commits
4
Pipelines
0
Changes
1
Expand
0
0
Merge request reports
Viewing commit
b98176ec
Prev
Next
Show latest version
1 file
+
24
−
21
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
b98176ec
[FIX] update doc2vec in feature extractor
· b98176ec
Khalleud
authored
4 years ago
features_extractor.py
+
24
−
21
Options
@@ -8,6 +8,7 @@ import pandas as pd
import
numpy
as
np
from
gensim.models.doc2vec
import
Doc2Vec
,
TaggedDocument
from
nltk.tokenize
import
word_tokenize
import
spacy
class
feature_extractor
:
@@ -60,36 +61,38 @@ class feature_extractor:
def
doc2vec
(
self
,
max_epochs
,
vec_size
,
alpha
=
0.025
,
dm
=
1
):
#tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs_train)]
tagged_tr
=
[
TaggedDocument
(
words
=
word_tokenize
(
_d
.
lower
()),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_train
)]
#Tag test set
tagged_test
=
[
TaggedDocument
(
words
=
word_tokenize
(
_d
.
lower
()),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_test
)]
def
doc2vec
(
self
,
max_epochs
,
doc2vec_vec_size
,
doc2vec_min_count
,
doc2vec_dm
):
nlp
=
spacy
.
load
(
"
fr_core_news_sm
"
)
stopWords
=
set
(
stopwords
.
words
(
'
french
'
))
model
=
Doc2Vec
(
vector_size
=
vec_size
,
alpha
=
alpha
,
min_alpha
=
0.00025
,
min_count
=
1
,
dm
=
1
)
model
.
build_vocab
(
tagged_tr
)
for
epoch
in
range
(
max_epochs
):
print
(
'
iteration {0}
'
.
format
(
epoch
))
model
.
train
(
tagged_tr
,
total_examples
=
model
.
corpus_count
,
epochs
=
model
.
iter
)
# decrease the learning rate
model
.
alpha
-=
0.0002
# fix the learning rate, no decay
model
.
min_alpha
=
model
.
alpha
def
tokenize_fr_text
(
sentence
):
result
=
string
.
punctuation
# Tokeniser la phrase
doc
=
nlp
(
sentence
)
# Retourner le texte de chaque token
return
[
X
.
text
.
lower
()
for
X
in
doc
if
not
X
.
text
in
stopWords
and
not
X
.
text
in
result
and
not
len
(
X
.
text
)
<
2
]
#tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(self.docs_train)]
tagged_tr
=
[
TaggedDocument
(
words
=
tokenize_fr_text
(
_d
),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_train
)]
#Tag test set
tagged_test
=
[
TaggedDocument
(
words
=
tokenize_fr_text
(
_d
),
tags
=
[
str
(
i
)])
for
i
,
_d
in
enumerate
(
self
.
docs_test
)]
model
=
Doc2Vec
(
vector_size
=
doc2vec_vec_size
,
min_count
=
doc2vec_min_count
,
dm
=
doc2vec_dm
)
model
.
build_vocab
(
tagged_tr
)
model
.
train
(
tagged_tr
,
total_examples
=
model
.
corpus_count
,
epochs
=
max_epochs
)
set_tags
=
list
(
model
.
docvecs
.
doctags
)
nb_docs_small
=
len
(
set_tags
)
doc_vec_doc2vec
=
np
.
zeros
(
shape
=
(
nb_docs_small
,
vec_size
))
#i = 0
#for t in set_tags:
# doc_vec_doc2vec[i] = model.docvecs[t]
# i += 1
X_train
=
np
.
array
([
model
.
docvecs
[
str
(
i
)]
for
i
in
range
(
len
(
tagged_tr
))])
X_test
=
np
.
array
([
model
.
infer_vector
(
tagged_test
[
i
][
0
])
for
i
in
range
(
len
(
tagged_test
))])
return
X_train
,
X_test
Loading