Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
Fedhe-graph
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gladis
Fedhe-graph
Commits
6103dedf
Commit
6103dedf
authored
10 months ago
by
Athmane Mansour Bahar
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
7b0f54c0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
train.py
+90
-0
90 additions, 0 deletions
train.py
with
90 additions
and
0 deletions
train.py
0 → 100644
+
90
−
0
View file @
6103dedf
import
os
import
random
import
torch
import
warnings
from
tqdm
import
tqdm
from
utils.loaddata
import
load_batch_level_dataset
,
load_entity_level_dataset
,
load_metadata
,
transform_graph
from
model.autoencoder
import
build_model
from
torch.utils.data.sampler
import
SubsetRandomSampler
from
dgl.dataloading
import
GraphDataLoader
import
dgl
from
model.train
import
batch_level_train
from
utils.utils
import
set_random_seed
,
create_optimizer
from
utils.config
import
build_args
warnings
.
filterwarnings
(
'
ignore
'
)
def
extract_dataloaders
(
entries
,
batch_size
):
random
.
shuffle
(
entries
)
train_idx
=
torch
.
arange
(
len
(
entries
))
train_sampler
=
SubsetRandomSampler
(
train_idx
)
train_loader
=
GraphDataLoader
(
entries
,
batch_size
=
batch_size
,
sampler
=
train_sampler
)
return
train_loader
def
main
(
main_args
):
device
=
"
cpu
"
dataset_name
=
"
trace
"
if
dataset_name
==
'
streamspot
'
:
main_args
.
num_hidden
=
256
main_args
.
max_epoch
=
5
main_args
.
num_layers
=
4
elif
dataset_name
==
'
wget
'
:
main_args
.
num_hidden
=
256
main_args
.
max_epoch
=
2
main_args
.
num_layers
=
4
else
:
main_args
[
"
num_hidden
"
]
=
64
main_args
[
"
max_epoch
"
]
=
50
main_args
[
"
num_layers
"
]
=
3
set_random_seed
(
0
)
if
dataset_name
==
'
streamspot
'
or
dataset_name
==
'
wget
'
:
if
dataset_name
==
'
streamspot
'
:
batch_size
=
12
else
:
batch_size
=
1
dataset
=
load_batch_level_dataset
(
dataset_name
)
n_node_feat
=
dataset
[
'
n_feat
'
]
n_edge_feat
=
dataset
[
'
e_feat
'
]
graphs
=
dataset
[
'
dataset
'
]
train_index
=
dataset
[
'
train_index
'
]
main_args
.
n_dim
=
n_node_feat
main_args
.
e_dim
=
n_edge_feat
model
=
build_model
(
main_args
)
model
=
model
.
to
(
device
)
optimizer
=
create_optimizer
(
main_args
.
optimizer
,
model
,
main_args
.
lr
,
main_args
.
weight_decay
)
model
=
batch_level_train
(
model
,
graphs
,
(
extract_dataloaders
(
train_index
,
batch_size
)),
optimizer
,
main_args
.
max_epoch
,
device
,
main_args
.
n_dim
,
main_args
.
e_dim
)
torch
.
save
(
model
.
state_dict
(),
"
./checkpoints/checkpoint-{}.pt
"
.
format
(
dataset_name
))
else
:
metadata
=
load_metadata
(
dataset_name
)
main_args
[
"
n_dim
"
]
=
metadata
[
'
node_feature_dim
'
]
main_args
[
"
e_dim
"
]
=
metadata
[
'
edge_feature_dim
'
]
model
=
build_model
(
main_args
)
model
=
model
.
to
(
device
)
model
.
train
()
optimizer
=
create_optimizer
(
main_args
[
"
optimizer
"
],
model
,
main_args
[
"
lr
"
],
main_args
[
"
weight_decay
"
])
epoch_iter
=
tqdm
(
range
(
main_args
[
"
max_epoch
"
]))
n_train
=
metadata
[
'
n_train
'
]
for
epoch
in
epoch_iter
:
epoch_loss
=
0.0
for
i
in
range
(
n_train
):
g
=
load_entity_level_dataset
(
dataset_name
,
'
train
'
,
i
).
to
(
device
)
model
.
train
()
loss
=
model
(
g
)
loss
/=
n_train
optimizer
.
zero_grad
()
epoch_loss
+=
loss
.
item
()
loss
.
backward
()
optimizer
.
step
()
del
g
epoch_iter
.
set_description
(
f
"
Epoch
{
epoch
}
| train_loss:
{
epoch_loss
:
.
4
f
}
"
)
torch
.
save
(
model
.
state_dict
(),
"
./result/checkpoint-{}.pt
"
.
format
(
dataset_name
))
return
if
__name__
==
'
__main__
'
:
args
=
build_args
()
main
(
args
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment