Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
Fedhe-graph
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gladis
Fedhe-graph
Commits
c8d80239
Commit
c8d80239
authored
9 months ago
by
Athmane Mansour Bahar
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
e5813ddb
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
utils/utils.py
+112
-0
112 additions, 0 deletions
utils/utils.py
with
112 additions
and
0 deletions
utils/utils.py
0 → 100644
+
112
−
0
View file @
c8d80239
import
torch
import
torch.nn
as
nn
from
functools
import
partial
import
numpy
as
np
import
random
import
torch.optim
as
optim
def
create_optimizer
(
opt
,
model
,
lr
,
weight_decay
):
opt_lower
=
opt
.
lower
()
parameters
=
model
.
parameters
()
opt_args
=
dict
(
lr
=
lr
,
weight_decay
=
weight_decay
)
optimizer
=
None
opt_split
=
opt_lower
.
split
(
"
_
"
)
opt_lower
=
opt_split
[
-
1
]
if
opt_lower
==
"
adam
"
:
optimizer
=
optim
.
Adam
(
parameters
,
**
opt_args
)
elif
opt_lower
==
"
adamw
"
:
optimizer
=
optim
.
AdamW
(
parameters
,
**
opt_args
)
elif
opt_lower
==
"
adadelta
"
:
optimizer
=
optim
.
Adadelta
(
parameters
,
**
opt_args
)
elif
opt_lower
==
"
radam
"
:
optimizer
=
optim
.
RAdam
(
parameters
,
**
opt_args
)
elif
opt_lower
==
"
sgd
"
:
opt_args
[
"
momentum
"
]
=
0.9
return
optim
.
SGD
(
parameters
,
**
opt_args
)
else
:
assert
False
and
"
Invalid optimizer
"
return
optimizer
def
random_shuffle
(
x
,
y
):
idx
=
list
(
range
(
len
(
x
)))
random
.
shuffle
(
idx
)
return
x
[
idx
],
y
[
idx
]
def
set_random_seed
(
seed
):
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
torch
.
manual_seed
(
seed
)
torch
.
cuda
.
manual_seed
(
seed
)
torch
.
cuda
.
manual_seed_all
(
seed
)
torch
.
backends
.
cudnn
.
determinstic
=
True
def
create_activation
(
name
):
if
name
==
"
relu
"
:
return
nn
.
ReLU
()
elif
name
==
"
gelu
"
:
return
nn
.
GELU
()
elif
name
==
"
prelu
"
:
return
nn
.
PReLU
()
elif
name
is
None
:
return
nn
.
Identity
()
elif
name
==
"
elu
"
:
return
nn
.
ELU
()
else
:
raise
NotImplementedError
(
f
"
{
name
}
is not implemented.
"
)
def
create_norm
(
name
):
if
name
==
"
layernorm
"
:
return
nn
.
LayerNorm
elif
name
==
"
batchnorm
"
:
return
nn
.
BatchNorm1d
elif
name
==
"
graphnorm
"
:
return
partial
(
NormLayer
,
norm_type
=
"
groupnorm
"
)
else
:
return
None
class
NormLayer
(
nn
.
Module
):
def
__init__
(
self
,
hidden_dim
,
norm_type
):
super
().
__init__
()
if
norm_type
==
"
batchnorm
"
:
self
.
norm
=
nn
.
BatchNorm1d
(
hidden_dim
)
elif
norm_type
==
"
layernorm
"
:
self
.
norm
=
nn
.
LayerNorm
(
hidden_dim
)
elif
norm_type
==
"
graphnorm
"
:
self
.
norm
=
norm_type
self
.
weight
=
nn
.
Parameter
(
torch
.
ones
(
hidden_dim
))
self
.
bias
=
nn
.
Parameter
(
torch
.
zeros
(
hidden_dim
))
self
.
mean_scale
=
nn
.
Parameter
(
torch
.
ones
(
hidden_dim
))
else
:
raise
NotImplementedError
def
forward
(
self
,
graph
,
x
):
tensor
=
x
if
self
.
norm
is
not
None
and
type
(
self
.
norm
)
!=
str
:
return
self
.
norm
(
tensor
)
elif
self
.
norm
is
None
:
return
tensor
batch_list
=
graph
.
batch_num_nodes
batch_size
=
len
(
batch_list
)
batch_list
=
torch
.
Tensor
(
batch_list
).
long
().
to
(
tensor
.
device
)
batch_index
=
torch
.
arange
(
batch_size
).
to
(
tensor
.
device
).
repeat_interleave
(
batch_list
)
batch_index
=
batch_index
.
view
((
-
1
,)
+
(
1
,)
*
(
tensor
.
dim
()
-
1
)).
expand_as
(
tensor
)
mean
=
torch
.
zeros
(
batch_size
,
*
tensor
.
shape
[
1
:]).
to
(
tensor
.
device
)
mean
=
mean
.
scatter_add_
(
0
,
batch_index
,
tensor
)
mean
=
(
mean
.
T
/
batch_list
).
T
mean
=
mean
.
repeat_interleave
(
batch_list
,
dim
=
0
)
sub
=
tensor
-
mean
*
self
.
mean_scale
std
=
torch
.
zeros
(
batch_size
,
*
tensor
.
shape
[
1
:]).
to
(
tensor
.
device
)
std
=
std
.
scatter_add_
(
0
,
batch_index
,
sub
.
pow
(
2
))
std
=
((
std
.
T
/
batch_list
).
T
+
1e-6
).
sqrt
()
std
=
std
.
repeat_interleave
(
batch_list
,
dim
=
0
)
return
self
.
weight
*
sub
/
std
+
self
.
bias
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment