Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
Fedhe-graph
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gladis
Fedhe-graph
Commits
fbcf8812
Commit
fbcf8812
authored
9 months ago
by
Athmane Mansour Bahar
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
d2da9340
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
trainer/magic_aggregator.py
+127
-0
127 additions, 0 deletions
trainer/magic_aggregator.py
with
127 additions
and
0 deletions
trainer/magic_aggregator.py
0 → 100644
+
127
−
0
View file @
fbcf8812
import
logging
import
numpy
as
np
import
torch
import
wandb
from
sklearn.metrics
import
roc_auc_score
,
precision_recall_curve
,
auc
from
utils.config
import
build_args
from
fedml.core
import
ServerAggregator
from
model.eval
import
batch_level_evaluation
,
evaluate_entity_level_using_knn
from
utils.poolers
import
Pooling
# Trainer for MoleculeNet. The evaluation metric is ROC-AUC
from
data.data_loader
import
load_batch_level_dataset_main
,
load_metadata
,
load_entity_level_dataset
from
utils.loaddata
import
load_batch_level_dataset
class
MagicWgetAggregator
(
ServerAggregator
):
def
__init__
(
self
,
model
,
args
,
name
):
super
().
__init__
(
model
,
args
)
self
.
name
=
name
def
get_model_params
(
self
):
return
self
.
model
.
cpu
().
state_dict
()
def
set_model_params
(
self
,
model_parameters
):
logging
.
info
(
"
set_model_params
"
)
self
.
model
.
load_state_dict
(
model_parameters
)
def
test
(
self
,
test_data
,
device
,
args
):
pass
def
test_all
(
self
,
train_data_local_dict
,
test_data_local_dict
,
device
,
args
)
->
bool
:
logging
.
info
(
"
----------test_on_the_server--------
"
)
model_list
,
score_list
=
[],
[]
for
client_idx
in
test_data_local_dict
.
keys
():
test_data
=
test_data_local_dict
[
client_idx
]
score
,
model
=
self
.
_test
(
test_data
,
device
,
args
)
for
idx
in
range
(
len
(
model_list
)):
self
.
_compare_models
(
model
,
model_list
[
idx
])
model_list
.
append
(
model
)
score_list
.
append
(
score
)
logging
.
info
(
"
Client {}, Test ROC-AUC score = {}
"
.
format
(
client_idx
,
score
))
if
args
.
enable_wandb
:
wandb
.
log
({
"
Client {} Test/ROC-AUC
"
.
format
(
client_idx
):
score
})
avg_score
=
np
.
mean
(
np
.
array
(
score_list
))
logging
.
info
(
"
Test ROC-AUC Score = {}
"
.
format
(
avg_score
))
if
args
.
enable_wandb
:
wandb
.
log
({
"
Test/ROC-AUC
"
:
avg_score
})
return
True
def
_compare_models
(
self
,
model_1
,
model_2
):
models_differ
=
0
for
key_item_1
,
key_item_2
in
zip
(
model_1
.
state_dict
().
items
(),
model_2
.
state_dict
().
items
()):
if
torch
.
equal
(
key_item_1
[
1
],
key_item_2
[
1
]):
pass
else
:
models_differ
+=
1
if
key_item_1
[
0
]
==
key_item_2
[
0
]:
logging
.
info
(
"
Mismatch found at
"
,
key_item_1
[
0
])
else
:
raise
Exception
if
models_differ
==
0
:
logging
.
info
(
"
Models match perfectly! :)
"
)
def
_test
(
self
,
test_data
,
device
,
args
):
args
=
build_args
()
if
(
self
.
name
==
'
wget
'
or
self
.
name
==
'
streamspot
'
):
logging
.
info
(
"
----------test--------
"
)
model
=
self
.
model
model
.
eval
()
model
.
to
(
device
)
pooler
=
Pooling
(
args
[
"
pooling
"
])
dataset
=
load_batch_level_dataset
(
self
.
name
)
n_node_feat
=
dataset
[
'
n_feat
'
]
n_edge_feat
=
dataset
[
'
e_feat
'
]
args
[
"
n_dim
"
]
=
n_node_feat
args
[
"
e_dim
"
]
=
n_edge_feat
test_auc
,
test_std
=
batch_level_evaluation
(
model
,
pooler
,
device
,
[
'
knn
'
],
self
.
name
,
args
[
"
n_dim
"
],
args
[
"
e_dim
"
])
else
:
torch
.
save
(
self
.
model
.
state_dict
(),
"
./result/FedAvg-4client-{}.pt
"
.
format
(
self
.
name
))
metadata
=
load_metadata
(
self
.
name
)
args
[
"
n_dim
"
]
=
metadata
[
'
node_feature_dim
'
]
args
[
"
e_dim
"
]
=
metadata
[
'
edge_feature_dim
'
]
model
=
self
.
model
.
to
(
device
)
model
.
eval
()
malicious
,
_
=
metadata
[
'
malicious
'
]
n_train
=
metadata
[
'
n_train
'
]
n_test
=
metadata
[
'
n_test
'
]
with
torch
.
no_grad
():
x_train
=
[]
for
i
in
range
(
n_train
):
g
=
load_entity_level_dataset
(
self
.
name
,
'
train
'
,
i
).
to
(
device
)
x_train
.
append
(
model
.
embed
(
g
).
cpu
().
detach
().
numpy
())
del
g
x_train
=
np
.
concatenate
(
x_train
,
axis
=
0
)
skip_benign
=
0
x_test
=
[]
for
i
in
range
(
n_test
):
g
=
load_entity_level_dataset
(
self
.
name
,
'
test
'
,
i
).
to
(
device
)
# Exclude training samples from the test set
if
i
!=
n_test
-
1
:
skip_benign
+=
g
.
number_of_nodes
()
x_test
.
append
(
model
.
embed
(
g
).
cpu
().
detach
().
numpy
())
del
g
x_test
=
np
.
concatenate
(
x_test
,
axis
=
0
)
n
=
x_test
.
shape
[
0
]
y_test
=
np
.
zeros
(
n
)
y_test
[
malicious
]
=
1.0
malicious_dict
=
{}
for
i
,
m
in
enumerate
(
malicious
):
malicious_dict
[
m
]
=
i
# Exclude training samples from the test set
test_idx
=
[]
for
i
in
range
(
x_test
.
shape
[
0
]):
if
i
>=
skip_benign
or
y_test
[
i
]
==
1.0
:
test_idx
.
append
(
i
)
result_x_test
=
x_test
[
test_idx
]
result_y_test
=
y_test
[
test_idx
]
del
x_test
,
y_test
test_auc
,
test_std
,
_
,
_
=
evaluate_entity_level_using_knn
(
self
.
name
,
x_train
,
result_x_test
,
result_y_test
)
torch
.
save
(
model
.
state_dict
(),
"
./result/FedAvg-{}.pt
"
.
format
(
self
.
name
))
return
test_auc
,
model
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment