Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
Cnr
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Hamida Seba
Cnr
Commits
41bc9521
Commit
41bc9521
authored
3 years ago
by
Ikenna Oluigbo
Browse files
Options
Downloads
Patches
Plain Diff
NC
parent
bee165d8
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
node_classification.py
+125
-0
125 additions, 0 deletions
node_classification.py
with
125 additions
and
0 deletions
node_classification.py
0 → 100644
+
125
−
0
View file @
41bc9521
import
tensorflow
as
tf
from
sklearn.preprocessing
import
LabelEncoder
from
tensorflow.keras.utils
import
to_categorical
from
spektral.layers
import
GCNConv
from
tensorflow.keras.models
import
Model
from
tensorflow.keras.layers
import
Dropout
,
Input
from
tensorflow.keras
import
regularizers
from
sklearn.metrics
import
classification_report
from
build_graph
import
node_labels
,
build
from
embeds
import
*
labels_dict
=
node_labels
()
labels
=
list
(
labels_dict
.
values
())
G
=
build
()
nodeslist_emb
,
feat_emb
,
node_emb
,
name
=
read_EmbsCNI
([
'
filename.emb
'
])
#Read emb or txt file
node_emb
=
np
.
array
(
node_emb
)
F
=
node_emb
.
shape
[
1
]
#the dimensions of node embeddings
N
=
len
(
nodeslist_emb
)
random_state
=
33
def
encode_labels
(
train_size
,
test_size
,
validation_size
):
#Default = [0.5, 0.3, 0.2]
labels_index
=
[
l
for
l
in
range
(
len
(
labels
))]
train_limit
=
int
(
len
(
labels_index
)
*
train_size
)
test_limit
=
int
(
len
(
labels_index
)
*
(
train_size
+
test_size
))
validation_limit
=
int
(
len
(
labels_index
)
*
(
train_size
+
test_size
+
validation_size
))
train_indices
=
labels_index
[:
train_limit
]
test_indices
=
labels_index
[:]
validation_indices
=
labels_index
[
test_limit
:]
train_enc
=
np
.
zeros
((
N
,),
dtype
=
bool
)
train_enc
[
train_indices
]
=
True
test_enc
=
np
.
zeros
((
N
,),
dtype
=
bool
)
test_enc
[
test_indices
]
=
True
val_enc
=
np
.
zeros
((
N
,),
dtype
=
bool
)
val_enc
[
validation_indices
]
=
True
return
train_enc
,
test_enc
,
val_enc
def
adj_matrix
():
A
=
nx
.
adjacency_matrix
(
G
)
return
A
def
onehot_encode_label
():
label_encoder
=
LabelEncoder
()
label
=
label_encoder
.
fit_transform
(
feat_emb
)
label
=
to_categorical
(
label
)
return
label
,
label_encoder
.
classes_
#labels_encoded, classes = onehot_encode_label()
def
GCN_Node_Class
():
#HyperParameters Tuning
A
=
adj_matrix
()
labels_encoded
,
classes
=
onehot_encode_label
()
train_enc
,
test_enc
,
val_enc
=
encode_labels
(
train_size
=
0.6
,
test_size
=
0.2
,
validation_size
=
0.2
)
num_classes
=
len
(
set
(
feat_emb
))
hyperP
=
{
'
channels
'
:
16
,
'
dropout
'
:
0.5
,
'
l2_reg
'
:
5e-4
,
'
learning_rate
'
:
1e-2
,
'
epochs
'
:
200
,
'
es_patience
'
:
10
}
# Preprocessing operations
tf
.
random
.
set_seed
(
1
)
A
=
GCNConv
.
preprocess
(
A
).
astype
(
'
f4
'
)
# Model definition
X_in
=
Input
(
shape
=
(
F
,
))
fltr_in
=
Input
((
N
,
),
sparse
=
True
)
dropout_1
=
Dropout
(
hyperP
[
'
dropout
'
])(
X_in
)
graph_conv_1
=
GCNConv
(
hyperP
[
'
channels
'
],
activation
=
'
tanh
'
,
#relu, tanh
kernel_regularizer
=
regularizers
.
L2
(
hyperP
[
'
l2_reg
'
]),
use_bias
=
False
)([
dropout_1
,
fltr_in
])
dropout_2
=
Dropout
(
hyperP
[
'
dropout
'
])(
graph_conv_1
)
graph_conv_2
=
GCNConv
(
num_classes
,
activation
=
'
softmax
'
,
use_bias
=
False
)([
dropout_2
,
fltr_in
])
tf
.
random
.
set_seed
(
1
)
# Build model
model
=
Model
(
inputs
=
[
X_in
,
fltr_in
],
outputs
=
graph_conv_2
)
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
lr
=
hyperP
[
'
learning_rate
'
])
model
.
compile
(
optimizer
=
optimizer
,
loss
=
'
categorical_crossentropy
'
,
#categorical_crossentropy, binary_crossentropy
weighted_metrics
=
[
'
acc
'
])
model
.
summary
()
validation_data
=
([
node_emb
,
A
],
labels_encoded
,
val_enc
)
model
.
fit
([
node_emb
,
A
],
labels_encoded
,
sample_weight
=
train_enc
,
epochs
=
hyperP
[
'
epochs
'
],
batch_size
=
N
,
validation_data
=
validation_data
,
shuffle
=
False
,
callbacks
=
[
tf
.
keras
.
callbacks
.
EarlyStopping
(
patience
=
hyperP
[
'
es_patience
'
],
restore_best_weights
=
True
)])
# Evaluate model
X_te
=
node_emb
[
test_enc
]
A_te
=
A
[
test_enc
,:][:,
test_enc
]
y_te
=
labels_encoded
[
test_enc
]
y_pred
=
model
.
predict
([
X_te
,
A_te
],
batch_size
=
N
)
classes
=
list
(
map
(
str
,
classes
))
report
=
classification_report
(
np
.
argmax
(
y_te
,
axis
=
1
),
np
.
argmax
(
y_pred
,
axis
=
1
),
target_names
=
classes
)
print
(
'
>>>>>>>>>>>
'
,
name
,
end
=
'
\n
'
)
print
(
'
GCN Classification Report:
\n
{}
'
.
format
(
report
))
#GCN_Node_Class()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment