Skip to content
Snippets Groups Projects
Commit 2fcbb8a4 authored by Fize Jacques's avatar Fize Jacques
Browse files

debug

parent ea7ea1d7
No related branches found
No related tags found
No related merge requests found
......@@ -64,7 +64,7 @@ methods = ['random_prediction',
pbar = tqdm(methods,disable= (not args.verbose))
for method in pbar:
pbar.set_description("Evaluate "+method)
result = nee.evaluate_baseline(method=method, )
result = nee.evaluate_baseline(method=method,)
scoresheet.log_results(result)
if args.network_embedding:
......@@ -91,7 +91,7 @@ if args.network_embedding:
pbar.set_description("Evaluate "+method)
command = commands[i] + " --input {} --output {} --representation-size {}"
results = nee.evaluate_cmd(method_name=methods[i], method_type='ne', command=command,
edge_embedding_methods=edge_emb, input_delim=' ', output_delim=' ', verbose=args.verbose)
edge_embedding_methods=edge_emb, input_delim=' ', output_delim=' ', verbose=args.verbose,write_weights=nx.is_weighted(G))
scoresheet.log_results(results)
except ImportError:
......
......@@ -103,7 +103,8 @@ def _conf_model(degree_seq):
def powerlaw_graph(nb_nodes, nb_edges, exponent=2, tries=1000, min_deg=1):
"""
Generate a graph with a definied number of vertices, edges, and a degree distribution that fit the power law.
Generate a graph with a defined number of vertices, edges, and a degree distribution that fit the power law.
Using the Molloy-Reed algorithm to
Parameters
----------
nb_nodes : int
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment