Skip to content
Snippets Groups Projects
Commit 9871e523 authored by Fize Jacques's avatar Fize Jacques
Browse files

remove some prints

parent 92828d6a
No related branches found
No related tags found
No related merge requests found
......@@ -15,7 +15,7 @@ import networkx as nx
import numpy as np
float_epsilon = np.finfo(float).eps
VERBOSE = True
VERBOSE = False
def log(x):
if VERBOSE:
print(x)
......@@ -43,7 +43,6 @@ class ErosionModel():
old_probs = dict(self.probs_df["hash_ p_{0}".format(self.nb_of_erosion - 1).split()].values)
auc_sbm, auc_spatial = get_auc_heuristics(self.H, 60)
print(auc_spatial,auc_sbm)
edges = get_all_possible_edges(self.H)
if auc_sbm > auc_spatial:
probs = stochastic_block_model(self.H, edges)
......@@ -65,7 +64,6 @@ class ErosionModel():
[(1 / self.H.size()) - ((probs_dom[ix]*sum_prob_dom)/sum_prob_dom_H) for ix, ed in enumerate(edges) if self.H.has_edge(*ed)])
hhh[hhh < 0] = 0
new_nb_edges = hhh.sum() * self.H.size()
#print(hhh)
probs_erosion = np.asarray([old_probs[hash_func(ed)] - probs_dom[ix] for ix, ed in enumerate(edges)])
probs_erosion[probs_erosion <= 0] = float_epsilon
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment