Skip to content
Snippets Groups Projects
Commit a12ebebc authored by Fize Jacques's avatar Fize Jacques
Browse files

debug

parent 299c9dcd
No related branches found
No related tags found
No related merge requests found
...@@ -36,6 +36,8 @@ parser.add_argument("nb_nodes",type=int) ...@@ -36,6 +36,8 @@ parser.add_argument("nb_nodes",type=int)
parser.add_argument("nb_edges",type=int) parser.add_argument("nb_edges",type=int)
parser.add_argument("nb_com",type=int) parser.add_argument("nb_com",type=int)
parser.add_argument("alpha",type=float) parser.add_argument("alpha",type=float)
parser.add_argument("nb_iterations",type=int)
parser.add_argument('-f', '--features', help='Feature(s) used in the model training', type=str)
parser.add_argument("-v","--verbose",action="store_true") parser.add_argument("-v","--verbose",action="store_true")
args= parser.parse_args() args= parser.parse_args()
...@@ -44,8 +46,9 @@ GRAPH_NODE_NB = args.nb_nodes ...@@ -44,8 +46,9 @@ GRAPH_NODE_NB = args.nb_nodes
GRAPH_EDGE_NB = args.nb_edges GRAPH_EDGE_NB = args.nb_edges
ALPHA = args.alpha ALPHA = args.alpha
NB_COM = args.nb_com NB_COM = args.nb_com
NB_ITERATION = 3 NB_ITERATION = args.nb_iterations
VERBOSE = args.verbose VERBOSE = args.verbose
FEATURES = set(args.features.split(","))
dist = lambda a,b : np.linalg.norm(a-b)**2 dist = lambda a,b : np.linalg.norm(a-b)**2
hash_func = lambda x:"_".join(sorted([str(x[0]),str(x[1])])) hash_func = lambda x:"_".join(sorted([str(x[0]),str(x[1])]))
...@@ -113,23 +116,31 @@ y_train = traintest_split.train_labels ...@@ -113,23 +116,31 @@ y_train = traintest_split.train_labels
X_test = traintest_split.test_edges X_test = traintest_split.test_edges
y_test = traintest_split.test_labels y_test = traintest_split.test_labels
if "pos" in FEATURES:
pos = nx.get_node_attributes(G,"pos")
dist_X_train = np.asarray([dist(pos[ed[0]],pos[ed[1]]) for ed in X_train]).reshape(-1,1)
dist_X_test = np.asarray([dist(pos[ed[0]],pos[ed[1]]) for ed in X_test]).reshape(-1,1)
pos = nx.get_node_attributes(G,"pos") X_train = np.concatenate((X_train, dist_X_train), axis=1)
dist_X_train = np.asarray([dist(pos[ed[0]],pos[ed[1]]) for ed in X_train]).reshape(-1,1) X_test = np.concatenate((X_test, dist_X_test), axis=1)
dist_X_test = np.asarray([dist(pos[ed[0]],pos[ed[1]]) for ed in X_test]).reshape(-1,1)
if "centrality" in FEATURES:
centrality = nx.degree_centrality(G)
centrality_X_train = np.asarray([[centrality[ed[0]],centrality[ed[1]]] for ed in X_train])
centrality_X_test = np.asarray([[centrality[ed[0]],centrality[ed[1]]] for ed in X_test])
X_train = np.concatenate((X_train, centrality_X_train), axis=1)
X_test = np.concatenate((X_test, centrality_X_test), axis=1)
centrality = nx.degree_centrality(G) if "it_probs":
centrality_X_train = np.asarray([[centrality[ed[0]],centrality[ed[1]]] for ed in X_train]) if_not =[0 for i in range(NB_ITERATION-1)]
centrality_X_test = np.asarray([[centrality[ed[0]],centrality[ed[1]]] for ed in X_test]) feature_X_train = np.asarray([ (edge_feature[hash_func(ed)] if hash_func(ed) in edge_feature else if_not) for ed in X_train])
feature_X_test = np.asarray([ (edge_feature[hash_func(ed)] if hash_func(ed) in edge_feature else if_not) for ed in X_test])
if_not =[0 for i in range(NB_ITERATION-1)] X_train = np.concatenate((X_train, feature_X_train), axis=1)
feature_X_train = np.asarray([ (edge_feature[hash_func(ed)] if hash_func(ed) in edge_feature else if_not) for ed in X_train]) X_test = np.concatenate((X_test, feature_X_test ), axis=1)
feature_X_test = np.asarray([ (edge_feature[hash_func(ed)] if hash_func(ed) in edge_feature else if_not) for ed in X_test])
##ADD centrality and distance to X train
X_train = np.concatenate((X_train,dist_X_train,centrality_X_train),axis=1)
X_test = np.concatenate((X_test,dist_X_test,centrality_X_test),axis=1)
classifier_dict = { classifier_dict = {
......
...@@ -5,7 +5,7 @@ do ...@@ -5,7 +5,7 @@ do
for nbcom in 2 3 4 5 for nbcom in 2 3 4 5
do do
echo "alpha= "$alpha", nb_com= "$nbcom echo "alpha= "$alpha", nb_com= "$nbcom
python eval_mixed_model.py 100 200 $nbcom $alpha python eval_mixed_model.py 100 200 $nbcom $alpha -f pos,centrality,it_probs
python eval_mixed_model.py 300 600 $nbcom $alpha python eval_mixed_model.py 300 600 $nbcom $alpha -f pos,centrality,it_probs
done done
done done
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment