Newer
Older
The first test (\RefFig{fig:synth}) compares the performance of both
detectors on a set of 1000 synthesized images containing 10 randomly
Altough this perfect world context with low gradient noise tends to soften
the old detector weaknesses, the results of \RefTab{tab:synth} show slightly
better width and angle measurements on long segments for the new detector.
The new detector generates more small segments that degrade the angle
estimations, but it produces a smaller amount of false detections and
\begin{figure}[h]
%\center
\begin{tabular}{
c@{\hspace{0.1cm}}c@{\hspace{0.1cm}}c@{\hspace{0.1cm}}c@{\hspace{0.1cm}}c}
\includegraphics[width=0.19\textwidth]{Fig_synth/statsExample.png} &
\includegraphics[width=0.19\textwidth]{Fig_synth/statsoldPoints.png} &
\includegraphics[width=0.19\textwidth]{Fig_synth/statsoldBounds.png} &
\includegraphics[width=0.19\textwidth]{Fig_synth/statsnewPoints.png} &
\includegraphics[width=0.19\textwidth]{Fig_synth/statsnewBounds.png}
\begin{picture}(1,1)
\put(-310,0){a)}
\put(-240,0){b)}
\put(-170,0){c)}
\put(-100,0){d)}
\put(-30,0){e)}
\end{picture}
\end{tabular}
\caption{Evaluation on synthesized images:
b) output blurred segments from the old detector and
c) their enclosing digital segments,
d) output blurred segments from the new detector and
e) their enclosing digital segments.}
\label{fig:synth}
\end{figure}
\begin{table}
\centering
\input{Fig_synth/statsTable}
\caption{Measured performance of both detectors on a set of synthesized images.
$S$ is the set of all the input segments,
$D$ the set of all the detected blurred segments.}