Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
2
2019 FBSD
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Kerautret Bertrand
2019 FBSD
Commits
7e1f8b0e
Commit
7e1f8b0e
authored
6 years ago
by
even
Browse files
Options
Downloads
Patches
Plain Diff
assigned width in article
parent
f99aa597
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
Article/Fig_notions/fig.tex
+47
-0
47 additions, 0 deletions
Article/Fig_notions/fig.tex
Article/biblio.bib
+13
-8
13 additions, 8 deletions
Article/biblio.bib
Article/method.tex
+31
-28
31 additions, 28 deletions
Article/method.tex
Article/notions.tex
+55
-36
55 additions, 36 deletions
Article/notions.tex
with
146 additions
and
72 deletions
Article/Fig_notions/fig.tex
0 → 100644
+
47
−
0
View file @
7e1f8b0e
\begin{center}
\begin{picture}
(320,120)(0,0)
\multiput
(-1,119)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,111)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,103)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,95)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,87)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,79)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,71)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,63)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,55)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,47)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,39)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,31)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,23)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,15)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,7)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\multiput
(-1,-1)(8,0)
{
40
}{
\makebox
(2,2)
{
.
}}
\put
(176,24)
{
\circle*
{
3
}}
\multiput
(168,32)(0,8)
{
3
}{
\circle*
{
3
}}
\multiput
(160,56)(0,8)
{
2
}{
\circle*
{
3
}}
\multiput
(152,72)(0,8)
{
3
}{
\circle*
{
3
}}
\put
(144,96)
{
\circle*
{
3
}}
\put
(183,23)
{
\framebox
(2,2)
}
\multiput
(175,31)(0,8)
{
3
}{
\framebox
(2,2)
}
\multiput
(167,55)(0,8)
{
2
}{
\framebox
(2,2)
}
\multiput
(159,71)(0,8)
{
3
}{
\framebox
(2,2)
}
\put
(151,95)
{
\framebox
(2,2)
}
\put
(192,24)
{
\circle
{
3
}}
\multiput
(184,32)(0,8)
{
3
}{
\circle
{
3
}}
\multiput
(176,56)(0,8)
{
2
}{
\circle
{
3
}}
\multiput
(168,72)(0,8)
{
3
}{
\circle
{
3
}}
\put
(160,96)
{
\circle
{
3
}}
\put
(168,24)
{
\makebox
(2,2)
{
-1
}}
\multiput
(160,32)(0,8)
{
3
}{
\makebox
(2,2)
{
-1
}}
\multiput
(152,56)(0,8)
{
2
}{
\makebox
(2,2)
{
-1
}}
\multiput
(144,72)(0,8)
{
3
}{
\makebox
(2,2)
{
-1
}}
\put
(136,96)
{
\makebox
(2,2)
{
-1
}}
\end{picture}
\end{center}
This diff is collapsed.
Click to expand it.
Article/biblio.bib
+
13
−
8
View file @
7e1f8b0e
@book
{
KletteRosenfeld04
,
title
=
{Digital geometry -- Geometric methods for digital picture analysis}
,
author
=
{Klette, Reinhard and Rosenfeld, Azriel}
,
editor
=
{Elsevier}
,
publisher
=
{Morgan Kaufmann}
,
year
=
{2004}
}
@inproceedings
{
KerautretEven09
,
title
=
{Blurred segments in gray level images for
interactive line extraction}
,
volume
=
{5852
}
,
author
=
{Kerautret, Bertrand and Even, Philippe
}
,
booktitle
=
{Proceedings of the 13th {IWCIA}}
,
series
=
{LNCS}
,
volume
=
{5852}
,
publisher
=
{Springer}
,
author
=
{Kerautret, Bertrand and Even, Philippe}
,
editor
=
{Wiederhold, P. and Barneva, R. P.}
,
month
=
nov
,
year
=
{2009}
,
series
=
{{LNCS}}
,
pages
=
{176--186}
}
@inproceedings
{
Debled05
,
@inproceedings
{
DebledAl05
,
title
=
{Blurred Segments Decomposition in Linear Time}
,
author
=
{Debled-Rennesson, Isabelle and Feschet, Fabien and
Rouyer-Degli, Jocelyne}
,
...
...
@@ -30,7 +38,6 @@
}
@article
{
Buzer07
,
title
=
"A simple algorithm for digital line recognition
in the general case"
,
...
...
@@ -44,7 +51,6 @@
}
@article
{
EvenMalavaud00
,
author
=
{Even, Philippe and Malavaud, Anne}
,
title
=
{Semi-automated edge segment specification for an interactive
...
...
@@ -57,7 +63,6 @@
}
@article
{
AubryAl17
,
author
=
{Aubry, Nicolas and Kerautret, Bertrand and Even, Philippe
and Debled-Rennesson, Isabelle}
,
...
...
This diff is collapsed.
Click to expand it.
Article/method.tex
+
31
−
28
View file @
7e1f8b0e
...
...
@@ -5,34 +5,37 @@
The blurred segment detector workflow is summerized
in the following figure.
\begin{center}
\begin{picture}
(340,34)(0,-4)
%\put(0,-2.5){\framebox(340,35)}
\put
(-2,18)
{
\scriptsize
$
(
A,B
)
$}
\put
(-2,15)
{
\vector
(1,0)
{
24
}}
\put
(24,0)
{
\framebox
(56,30)
}
\put
(24,15)
{
\makebox
(56,10)
{
Initial
}}
\put
(24,3)
{
\makebox
(56,10)
{
detection
}}
\put
(86,18)
{
\scriptsize
$
S
_{
i
}$}
\put
(80,15)
{
\vector
(1,0)
{
22
}}
%\put(102,0){\framebox(56,30)}
\multiput
(102,15)(28,9)
{
2
}{
\line
(3,-1)
{
28
}}
\multiput
(102,15)(28,-9)
{
2
}{
\line
(3,1)
{
28
}}
\put
(100,0)
{
\makebox
(60,30)
{
Valid ?
}}
\put
(133,-2)
{
\scriptsize
$
0
$}
\put
(130,6)
{
\vector
(0,-1)
{
10
}}
\put
(159,18)
{
\scriptsize
$
(
C,
\vec
{
D
}
)
$}
\put
(158,15)
{
\vector
(1,0)
{
28
}}
\put
(186,0)
{
\framebox
(56,30)
}
\put
(186,15)
{
\makebox
(56,10)
{
Fine
}}
\put
(186,3)
{
\makebox
(60,10)
{
tracking
}}
\put
(250,18)
{
\scriptsize
$
S
_{
f
}$}
\put
(242,15)
{
\vector
(1,0)
{
24
}}
\put
(266,0)
{
\framebox
(56,30)
{
Filtering
}}
\put
(330,18)
{
\scriptsize
$
S
_{
o
}$}
\put
(322,15)
{
\vector
(1,0)
{
22
}}
\end{picture}
\end{center}
\begin{figure}
[h]
\center
\begin{picture}
(340,34)(0,-4)
%\put(0,-2.5){\framebox(340,35)}
\put
(-2,18)
{
\scriptsize
$
(
A,B
)
$}
\put
(-2,15)
{
\vector
(1,0)
{
24
}}
\put
(24,0)
{
\framebox
(56,30)
}
\put
(24,15)
{
\makebox
(56,10)
{
Initial
}}
\put
(24,3)
{
\makebox
(56,10)
{
detection
}}
\put
(86,18)
{
\scriptsize
$
S
_{
i
}$}
\put
(80,15)
{
\vector
(1,0)
{
22
}}
%\put(102,0){\framebox(56,30)}
\multiput
(102,15)(28,9)
{
2
}{
\line
(3,-1)
{
28
}}
\multiput
(102,15)(28,-9)
{
2
}{
\line
(3,1)
{
28
}}
\put
(100,0)
{
\makebox
(60,30)
{
Valid ?
}}
\put
(133,-2)
{
\scriptsize
$
0
$}
\put
(130,6)
{
\vector
(0,-1)
{
10
}}
\put
(159,18)
{
\scriptsize
$
(
C,
\vec
{
D
}
)
$}
\put
(158,15)
{
\vector
(1,0)
{
28
}}
\put
(186,0)
{
\framebox
(56,30)
}
\put
(186,15)
{
\makebox
(56,10)
{
Fine
}}
\put
(186,3)
{
\makebox
(60,10)
{
tracking
}}
\put
(250,18)
{
\scriptsize
$
S
_{
f
}$}
\put
(242,15)
{
\vector
(1,0)
{
24
}}
\put
(266,0)
{
\framebox
(56,30)
{
Filtering
}}
\put
(330,18)
{
\scriptsize
$
S
_{
o
}$}
\put
(322,15)
{
\vector
(1,0)
{
22
}}
\end{picture}
\caption
{
The detection method work flow.
}
\label
{
fig:workflow
}
\end{figure}
The fast track stage consists in building and extending a blurred segment
$
S
_
i
$
based on the highest gradient points on each line of the directional
...
...
This diff is collapsed.
Click to expand it.
Article/notions.tex
+
55
−
36
View file @
7e1f8b0e
...
...
@@ -2,53 +2,72 @@
\subsection
{
Blurred segment
}
Our work relies on the notion of digital straight line
as classically
defined in the digital geometry literature
\cite
{
debled
}
.
Our work relies on the notion of digital straight line
as classically
defined in the digital geometry literature
\cite
{
KletteRosenfeld04
}
.
Only the 2-dimensional case is considered here.
\begin{definition}
A digital line
$
\
cal
D
$
with integer parameters
$
(
a,b,c,
\nu
)
$
is the set
A digital line
$
\
mathcal
{
D
}
$
with integer parameters
$
(
a,b,c,
\nu
)
$
is the set
of points
$
P
(
x,y
)
$
of
$
\mathbb
{
Z
}^
2
$
that satisfy :
$
0
\leq
ax
+
by
-
c <
\nu
$
.
\end{definition}
The parameter
$
\nu
$
is the width of the digital line.
If
$
\nu
=
max
(
|a|, |b|
)
$
,
$
\
cal
D
$
is the narrowest 8-connected
line
and is called a naive line.
The parameter
$
\nu
$
is the
arithmetic
width of the digital line.
When
$
\nu
=
max
(
|a|, |b|
)
$
,
$
\
mathcal
{
D
}
$
is the narrowest 8-connected
line
and is called a naive line.
\begin{definition}
A blurred segment of width
$
\nu
$
is a set
${
\cal
S
}_
\nu
$
of points in
$
\mathbb
{
Z
}^
2
$
that all belong to a digital line of width
$
\nu
$
.
A blurred segment of assigned width
$
\epsilon
$
is a set
$
\mathcal
{
S
}_
\epsilon
$
of points in
$
\mathbb
{
Z
}^
2
$
that all belong to a digital line of arithmetical
width
$
\epsilon
$
.
\end{definition}
\begin{picture}
(300,20)
\framebox
(300,20)
{
Exemple de segment flou ? (
\c
ca va finir par lasser)
}
\end{picture}
To construct a blurred segment we use a liner time algorithm based on the
incremental growth of the convex hull of the input points using Melkman
algorithm
\cite
{
Melkman87
}
. Points are added while the convex hull width
is less than the blurred segment assigned width.
Linear time algorithms have been developed to recognize a blurred segment
of assigned width
$
\epsilon
$
\cite
{
DebledAl05,Buzer07
}
.
They are based on an incremental growth of the convex hull of the blurred
segment when adding each point successively.
The minimal width
$
\mu
$
of the blurred segment is the minimal width of
this convex hull as computed by Melkman's algorithm
\cite
{
Melkman87
}
.
The extension of the blurred segment with a new input point is controlled
by the recognition test
$
\mu
<
\epsilon
$
.
\begin{figure}
[h]
\center
\begin{picture}
(300,40)
\end{picture}
\caption
{
Example of blurred segment and recognition problem.
}
\label
{
fig:bs
}
\end{figure}
At the beginning, a large width
$
\epsilon
_{
ini
}$
is assigned to the
recognition problem to allow the detection of large blurred segments.
Then, when extending the blurred segment, this assigned width is
gradually decremented to reach the detected blurred segment minimal width.
\subsection
{
Directional scan
}
A directional scan is a partition of a digital straight line
$
{
\cal
S
}$
,
called the
{
\it
scan strip
}
, into naive straight line segments
$
{
\cal
L
}_
i
$
,
that are orthogonal to
$
{
\cal
S
}$
. The segments, called
{
\it
scan lines
}
,
are
developed on each side of a central scan line
$
{
\cal
S
}_
0
$
, and labelled
with their manhattan distance (
$
d
_
1
=
|d
_
x|
+
|d
_
y|
$
) to
$
{
\cal
L
}_
0
$
and
A directional scan is a partition of a digital straight line
$
\
math
cal
{
S
}$
,
called the
{
\it
scan strip
}
, into naive straight line segments
$
\
math
cal
{
L
}_
i
$
,
that are orthogonal to
$
\
math
cal
{
S
}$
. The segments, called
{
\it
scan lines
}
,
are
developed on each side of a central scan line
$
\
math
cal
{
S
}_
0
$
, and labelled
with their manhattan distance (
$
d
_
1
=
|d
_
x|
+
|d
_
y|
$
) to
$
\
math
cal
{
L
}_
0
$
and
a positive (resp. negative) sign if their are on the left (resp. right)
of
${
\cal
L
}_
0
$
.
\begin{picture}
(300,20)
\framebox
(300,20)
{
Exemple de directional scan
}
\end{picture}
The directional scan can be defined by its central scan line
${
\cal
L
}_
0
$
.
of
$
\mathcal
{
L
}_
0
$
.
\begin{figure}
[h]
\center
%\begin{picture}(300,40)
%\end{picture}
\input
{
Fig
_
notions/fig
}
\caption
{
Example of directional scan.
}
\label
{
fig:ds
}
\end{figure}
The directional scan can be defined by its central scan line
$
\mathcal
{
L
}_
0
$
.
If
$
A
(
x
_
A,y
_
A
)
$
and
$
B
(
x
_
B,y
_
B
)
$
are the end points of this scan line,
the scan strip is defined by :
\centerline
{
$
{
\cal
S
}
(
A,B
)
=
{
\cal
D
}
(
a, b, c,
\nu
)
$
, with
$
\
math
cal
{
S
}
(
A,B
)
=
\
math
cal
{
D
}
(
a, b, c,
\nu
)
$
, with
$
\left\{
\begin
{
array
}{
l
}
a
=
x
_
B
-
x
_
A
\\
b
=
y
_
B
-
y
_
A
\\
...
...
@@ -59,10 +78,10 @@ c = min (c_1, c_2)
\noindent
where
$
c
_
1
=
a
\cdot
x
_
A
+
b
\cdot
y
_
A
$
and
$
c
_
2
=
a
\cdot
x
_
B
+
b
\cdot
y
_
B
$
.
The scan line
$
{
\cal
L
}_
i
(
A,B
)
$
is then defined by :
The scan line
$
\
math
cal
{
L
}_
i
(
A,B
)
$
is then defined by :
\centerline
{
$
{
\cal
L
}_
i
(
A,B
)
=
{
\cal
S
}
(
A,B
)
\cap
{
\cal
D
}
(
a', b', c',
\nu
'
)
$
, with
$
\
math
cal
{
L
}_
i
(
A,B
)
=
\
math
cal
{
S
}
(
A,B
)
\cap
\
math
cal
{
D
}
(
a', b', c',
\nu
'
)
$
, with
$
\left\{
\begin
{
array
}{
l
}
a'
=
y
_
B
-
y
_
A
\\
b'
=
x
_
A
-
x
_
B
\\
...
...
@@ -80,7 +99,7 @@ The directional scan can also be defined by its central point $C(x_C,y_C)$,
its direction
$
\vec
{
D
}
(
x
_
D,y
_
D
)
$
and its width
$
w
$
:
\centerline
{
$
{
\cal
S
}
(
C,
\vec
{
D
}
,w
)
=
{
\cal
D
}
(
a, b, c,
\nu
)
$
, with
$
\
math
cal
{
S
}
(
C,
\vec
{
D
}
,w
)
=
\
math
cal
{
D
}
(
a, b, c,
\nu
)
$
, with
$
\left\{
\begin
{
array
}{
l
}
a
=
y
_
D
\\
b
=
-
x
_
D
\\
...
...
@@ -89,11 +108,11 @@ c = a\cdot x_C + b\cdot y_C - w / 2
\end
{
array
}
\right
.
$
}
and the scan line
$
{
\cal
L
}_
i
(
A,B
)
$
by :
and the scan line
$
\
math
cal
{
L
}_
i
(
A,B
)
$
by :
\centerline
{
$
{
\cal
L
}_
i
(
C,
\vec
{
D
}
,w
)
=
{
\cal
S
}
(
C,
\vec
{
D
}
,w
)
\cap
{
\cal
D
}
(
a', b', c',
\nu
'
)
$
, with
$
\
math
cal
{
L
}_
i
(
C,
\vec
{
D
}
,w
)
=
\
math
cal
{
S
}
(
C,
\vec
{
D
}
,w
)
\cap
\
math
cal
{
D
}
(
a', b', c',
\nu
'
)
$
, with
$
\left\{
\begin
{
array
}{
l
}
a'
=
x
_
D
\\
b'
=
y
_
D
\\
...
...
@@ -128,4 +147,4 @@ Il faut donc r\'eactualiser la direction du scan.
$
N
$
scans reste limit
\'
e.
D'o
\`
u le scan adaptatif
$
\rightarrow
$
r
\'
eorientation de
$
\
cal
S
$
.
D'o
\`
u le scan adaptatif
$
\rightarrow
$
r
\'
eorientation de
$
\
mathcal
{
S
}
$
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment