Skip to content
Snippets Groups Projects
Commit 7e1f8b0e authored by even's avatar even
Browse files

assigned width in article

parent f99aa597
No related branches found
No related tags found
No related merge requests found
\begin{center}
\begin{picture}(320,120)(0,0)
\multiput(-1,119)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,111)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,103)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,95)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,87)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,79)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,71)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,63)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,55)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,47)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,39)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,31)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,23)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,15)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,7)(8,0){40}{\makebox(2,2){.}}
\multiput(-1,-1)(8,0){40}{\makebox(2,2){.}}
\put(176,24){\circle*{3}}
\multiput(168,32)(0,8){3}{\circle*{3}}
\multiput(160,56)(0,8){2}{\circle*{3}}
\multiput(152,72)(0,8){3}{\circle*{3}}
\put(144,96){\circle*{3}}
\put(183,23){\framebox(2,2)}
\multiput(175,31)(0,8){3}{\framebox(2,2)}
\multiput(167,55)(0,8){2}{\framebox(2,2)}
\multiput(159,71)(0,8){3}{\framebox(2,2)}
\put(151,95){\framebox(2,2)}
\put(192,24){\circle{3}}
\multiput(184,32)(0,8){3}{\circle{3}}
\multiput(176,56)(0,8){2}{\circle{3}}
\multiput(168,72)(0,8){3}{\circle{3}}
\put(160,96){\circle{3}}
\put(168,24){\makebox(2,2){-1}}
\multiput(160,32)(0,8){3}{\makebox(2,2){-1}}
\multiput(152,56)(0,8){2}{\makebox(2,2){-1}}
\multiput(144,72)(0,8){3}{\makebox(2,2){-1}}
\put(136,96){\makebox(2,2){-1}}
\end{picture}
\end{center}
@book{KletteRosenfeld04,
title = {Digital geometry -- Geometric methods for digital picture analysis},
author = {Klette, Reinhard and Rosenfeld, Azriel},
editor = {Elsevier},
publisher = {Morgan Kaufmann},
year = {2004}
}
@inproceedings{KerautretEven09,
title = {Blurred segments in gray level images for
interactive line extraction},
volume = {5852},
author = {Kerautret, Bertrand and Even, Philippe},
booktitle = {Proceedings of the 13th {IWCIA}},
series = {LNCS},
volume = {5852},
publisher = {Springer},
author = {Kerautret, Bertrand and Even, Philippe},
editor = {Wiederhold, P. and Barneva, R. P.},
month = nov,
year = {2009},
series = {{LNCS}},
pages = {176--186}
}
@inproceedings{Debled05,
@inproceedings{DebledAl05,
title = {Blurred Segments Decomposition in Linear Time},
author = {Debled-Rennesson, Isabelle and Feschet, Fabien and
Rouyer-Degli, Jocelyne},
......@@ -30,7 +38,6 @@
}
@article{Buzer07,
title = "A simple algorithm for digital line recognition
in the general case",
......@@ -44,7 +51,6 @@
}
@article{EvenMalavaud00,
author = {Even, Philippe and Malavaud, Anne},
title = {Semi-automated edge segment specification for an interactive
......@@ -57,7 +63,6 @@
}
@article{AubryAl17,
author = {Aubry, Nicolas and Kerautret, Bertrand and Even, Philippe
and Debled-Rennesson, Isabelle},
......
......@@ -5,34 +5,37 @@
The blurred segment detector workflow is summerized
in the following figure.
\begin{center}
\begin{picture}(340,34)(0,-4)
%\put(0,-2.5){\framebox(340,35)}
\put(-2,18){\scriptsize $(A,B)$}
\put(-2,15){\vector(1,0){24}}
\put(24,0){\framebox(56,30)}
\put(24,15){\makebox(56,10){Initial}}
\put(24,3){\makebox(56,10){detection}}
\put(86,18){\scriptsize $S_{i}$}
\put(80,15){\vector(1,0){22}}
%\put(102,0){\framebox(56,30)}
\multiput(102,15)(28,9){2}{\line(3,-1){28}}
\multiput(102,15)(28,-9){2}{\line(3,1){28}}
\put(100,0){\makebox(60,30){Valid ?}}
\put(133,-2){\scriptsize $0$}
\put(130,6){\vector(0,-1){10}}
\put(159,18){\scriptsize $(C,\vec{D})$}
\put(158,15){\vector(1,0){28}}
\put(186,0){\framebox(56,30)}
\put(186,15){\makebox(56,10){Fine}}
\put(186,3){\makebox(60,10){tracking}}
\put(250,18){\scriptsize $S_{f}$}
\put(242,15){\vector(1,0){24}}
\put(266,0){\framebox(56,30){Filtering}}
\put(330,18){\scriptsize $S_{o}$}
\put(322,15){\vector(1,0){22}}
\end{picture}
\end{center}
\begin{figure}[h]
\center
\begin{picture}(340,34)(0,-4)
%\put(0,-2.5){\framebox(340,35)}
\put(-2,18){\scriptsize $(A,B)$}
\put(-2,15){\vector(1,0){24}}
\put(24,0){\framebox(56,30)}
\put(24,15){\makebox(56,10){Initial}}
\put(24,3){\makebox(56,10){detection}}
\put(86,18){\scriptsize $S_{i}$}
\put(80,15){\vector(1,0){22}}
%\put(102,0){\framebox(56,30)}
\multiput(102,15)(28,9){2}{\line(3,-1){28}}
\multiput(102,15)(28,-9){2}{\line(3,1){28}}
\put(100,0){\makebox(60,30){Valid ?}}
\put(133,-2){\scriptsize $0$}
\put(130,6){\vector(0,-1){10}}
\put(159,18){\scriptsize $(C,\vec{D})$}
\put(158,15){\vector(1,0){28}}
\put(186,0){\framebox(56,30)}
\put(186,15){\makebox(56,10){Fine}}
\put(186,3){\makebox(60,10){tracking}}
\put(250,18){\scriptsize $S_{f}$}
\put(242,15){\vector(1,0){24}}
\put(266,0){\framebox(56,30){Filtering}}
\put(330,18){\scriptsize $S_{o}$}
\put(322,15){\vector(1,0){22}}
\end{picture}
\caption{The detection method work flow.}
\label{fig:workflow}
\end{figure}
The fast track stage consists in building and extending a blurred segment
$S_i$ based on the highest gradient points on each line of the directional
......
......@@ -2,53 +2,72 @@
\subsection{Blurred segment}
Our work relies on the notion of digital straight line
as classically defined in the digital geometry literature \cite{debled}.
Our work relies on the notion of digital straight line as classically
defined in the digital geometry literature \cite{KletteRosenfeld04}.
Only the 2-dimensional case is considered here.
\begin{definition}
A digital line $\cal D$ with integer parameters $(a,b,c,\nu)$ is the set
A digital line $\mathcal{D}$ with integer parameters $(a,b,c,\nu)$ is the set
of points $P(x,y)$ of $\mathbb{Z}^2$ that satisfy : $0 \leq ax + by - c < \nu$.
\end{definition}
The parameter $\nu$ is the width of the digital line.
If $\nu = max (|a|, |b|)$, $\cal D$ is the narrowest 8-connected line
and is called a naive line.
The parameter $\nu$ is the arithmetic width of the digital line.
When $\nu = max (|a|, |b|)$, $\mathcal{D}$ is the narrowest 8-connected
line and is called a naive line.
\begin{definition}
A blurred segment of width $\nu$ is a set ${\cal S}_\nu$ of points in
$\mathbb{Z}^2$ that all belong to a digital line of width $\nu$.
A blurred segment of assigned width $\epsilon$ is a set $\mathcal{S}_\epsilon$
of points in $\mathbb{Z}^2$ that all belong to a digital line of arithmetical
width $\epsilon$.
\end{definition}
\begin{picture}(300,20)
\framebox(300,20){Exemple de segment flou ? (\c ca va finir par lasser)}
\end{picture}
To construct a blurred segment we use a liner time algorithm based on the
incremental growth of the convex hull of the input points using Melkman
algorithm \cite{Melkman87}. Points are added while the convex hull width
is less than the blurred segment assigned width.
Linear time algorithms have been developed to recognize a blurred segment
of assigned width $\epsilon$ \cite{DebledAl05,Buzer07}.
They are based on an incremental growth of the convex hull of the blurred
segment when adding each point successively.
The minimal width $\mu$ of the blurred segment is the minimal width of
this convex hull as computed by Melkman's algorithm \cite{Melkman87}.
The extension of the blurred segment with a new input point is controlled
by the recognition test $\mu < \epsilon$.
\begin{figure}[h]
\center
\begin{picture}(300,40)
\end{picture}
\caption{Example of blurred segment and recognition problem.}
\label{fig:bs}
\end{figure}
At the beginning, a large width $\epsilon_{ini}$ is assigned to the
recognition problem to allow the detection of large blurred segments.
Then, when extending the blurred segment, this assigned width is
gradually decremented to reach the detected blurred segment minimal width.
\subsection{Directional scan}
A directional scan is a partition of a digital straight line ${\cal S}$,
called the {\it scan strip}, into naive straight line segments ${\cal L}_i$,
that are orthogonal to ${\cal S}$. The segments, called {\it scan lines}, are
developed on each side of a central scan line ${\cal S}_0$, and labelled
with their manhattan distance ($d_1 = |d_x| + |d_y|$) to ${\cal L}_0$ and
A directional scan is a partition of a digital straight line $\mathcal{S}$,
called the {\it scan strip}, into naive straight line segments $\mathcal{L}_i$,
that are orthogonal to $\mathcal{S}$. The segments, called {\it scan lines},
are developed on each side of a central scan line $\mathcal{S}_0$, and labelled
with their manhattan distance ($d_1 = |d_x| + |d_y|$) to $\mathcal{L}_0$ and
a positive (resp. negative) sign if their are on the left (resp. right)
of ${\cal L}_0$.
\begin{picture}(300,20)
\framebox(300,20){Exemple de directional scan}
\end{picture}
The directional scan can be defined by its central scan line ${\cal L}_0$.
of $\mathcal{L}_0$.
\begin{figure}[h]
\center
%\begin{picture}(300,40)
%\end{picture}
\input{Fig_notions/fig}
\caption{Example of directional scan.}
\label{fig:ds}
\end{figure}
The directional scan can be defined by its central scan line $\mathcal{L}_0$.
If $A(x_A,y_A)$ and $B(x_B,y_B)$ are the end points of this scan line,
the scan strip is defined by :
\centerline{
${\cal S}(A,B) = {\cal D}(a, b, c, \nu)$, with
$\mathcal{S}(A,B) = \mathcal{D}(a, b, c, \nu)$, with
$\left\{ \begin{array}{l}
a = x_B - x_A \\
b = y_B - y_A \\
......@@ -59,10 +78,10 @@ c = min (c_1, c_2)
\noindent
where $c_1 = a\cdot x_A + b\cdot y_A$ and $c_2 = a\cdot x_B + b\cdot y_B$.
The scan line ${\cal L}_i(A,B)$ is then defined by :
The scan line $\mathcal{L}_i(A,B)$ is then defined by :
\centerline{
${\cal L}_i(A,B) = {\cal S}(A,B) \cap {\cal D}(a', b', c', \nu')$, with
$\mathcal{L}_i(A,B) = \mathcal{S}(A,B) \cap \mathcal{D}(a', b', c', \nu')$, with
$\left\{ \begin{array}{l}
a' = y_B - y_A \\
b' = x_A - x_B \\
......@@ -80,7 +99,7 @@ The directional scan can also be defined by its central point $C(x_C,y_C)$,
its direction $\vec{D}(x_D,y_D)$ and its width $w$ :
\centerline{
${\cal S}(C,\vec{D},w) = {\cal D}(a, b, c, \nu)$, with
$\mathcal{S}(C,\vec{D},w) = \mathcal{D}(a, b, c, \nu)$, with
$\left\{ \begin{array}{l}
a = y_D \\
b = -x_D \\
......@@ -89,11 +108,11 @@ c = a\cdot x_C + b\cdot y_C - w / 2
\end{array} \right.$
}
and the scan line ${\cal L}_i(A,B)$ by :
and the scan line $\mathcal{L}_i(A,B)$ by :
\centerline{
${\cal L}_i(C,\vec{D},w) =
{\cal S}(C,\vec{D},w) \cap {\cal D}(a', b', c', \nu')$, with
$\mathcal{L}_i(C,\vec{D},w) =
\mathcal{S}(C,\vec{D},w) \cap \mathcal{D}(a', b', c', \nu')$, with
$\left\{ \begin{array}{l}
a' = x_D \\
b' = y_D \\
......@@ -128,4 +147,4 @@ Il faut donc r\'eactualiser la direction du scan.
$N$ scans reste limit\'e.
D'o\`u le scan adaptatif $\rightarrow$ r\'eorientation de $\cal S$.
D'o\`u le scan adaptatif $\rightarrow$ r\'eorientation de $\mathcal{S}$.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment