Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
2
2019 FBSD
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Kerautret Bertrand
2019 FBSD
Commits
98e75cff
Commit
98e75cff
authored
6 years ago
by
even
Browse files
Options
Downloads
Patches
Plain Diff
Article: equations revisited
parent
6e377eed
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
Article/Fig_method/algoMulti.tex
+1
-1
1 addition, 1 deletion
Article/Fig_method/algoMulti.tex
Article/intro.tex
+1
-1
1 addition, 1 deletion
Article/intro.tex
Article/method.tex
+32
-16
32 additions, 16 deletions
Article/method.tex
Article/notions.tex
+22
-22
22 additions, 22 deletions
Article/notions.tex
with
56 additions
and
40 deletions
Article/Fig_method/algoMulti.tex
+
1
−
1
View file @
98e75cff
...
@@ -6,7 +6,7 @@
...
@@ -6,7 +6,7 @@
\SetKwData
{
lm
}{
LocMax
}
\SetKwData
{
lm
}{
LocMax
}
\SetKwData
{
nullset
}{$
\emptyset
$}
\SetKwData
{
nullset
}{$
\emptyset
$}
\SetKwData
{
ortho
}{$
\vec
{
AB
}_
\perp
$}
\SetKwData
{
ortho
}{$
\vec
{
AB
}_
\perp
$}
\SetKwData
{
eps
}{$
\varepsilon
_{
ini
}$}
\SetKwData
{
eps
}{$
2
~
\varepsilon
_{
ini
}$}
\SetKwData
{
pta
}{$
A
$}
\SetKwData
{
pta
}{$
A
$}
\SetKwData
{
ptb
}{$
B
$}
\SetKwData
{
ptb
}{$
B
$}
\SetKwData
{
Result
}{
Result
}
\SetKwData
{
Result
}{
Result
}
...
...
This diff is collapsed.
Click to expand it.
Article/intro.tex
+
1
−
1
View file @
98e75cff
...
@@ -28,7 +28,7 @@ The present work aims at designing a flexible tool to detect blurred segments
...
@@ -28,7 +28,7 @@ The present work aims at designing a flexible tool to detect blurred segments
with optimal width and orientation in gray-level images for as well
with optimal width and orientation in gray-level images for as well
supervised as unsupervised contexts.
supervised as unsupervised contexts.
User-friendly solutions are sought, with ideally no parameter to set,
User-friendly solutions are sought, with ideally no parameter to set,
or at least quite few values with intuitive meaning
to an end user
.
or at least quite few values with intuitive meaning.
\subsection
{
Previous work
}
\subsection
{
Previous work
}
...
...
This diff is collapsed.
Click to expand it.
Article/method.tex
+
32
−
16
View file @
98e75cff
...
@@ -154,15 +154,15 @@ when the orientation is badly estimated (\RefFig{fig:escape} c).
...
@@ -154,15 +154,15 @@ when the orientation is badly estimated (\RefFig{fig:escape} c).
\includegraphics
[width=0.48\textwidth]
{
Fig
_
notions/escapeFirst
_
zoom.png
}
&
\includegraphics
[width=0.48\textwidth]
{
Fig
_
notions/escapeFirst
_
zoom.png
}
&
\includegraphics
[width=0.48\textwidth]
{
Fig
_
notions/escapeSecond
_
zoom.png
}
\\
\includegraphics
[width=0.48\textwidth]
{
Fig
_
notions/escapeSecond
_
zoom.png
}
\\
\multicolumn
{
2
}{
c
}{
\multicolumn
{
2
}{
c
}{
\includegraphics
[width=0.7
8
\textwidth]
{
Fig
_
notions/escapeThird
_
zoom.png
}}
\includegraphics
[width=0.7
2
\textwidth]
{
Fig
_
notions/escapeThird
_
zoom.png
}}
\begin{picture}
(1,1)(0,0)
\begin{picture}
(1,1)(0,0)
{
\color
{
dwhite
}{
{
\color
{
dwhite
}{
\put
(-260,10
8
.5)
{
\circle*
{
8
}}
\put
(-260,10
0
.5)
{
\circle*
{
8
}}
\put
(-86,10
8
.5)
{
\circle*
{
8
}}
\put
(-86,10
0
.5)
{
\circle*
{
8
}}
\put
(-172,7.5)
{
\circle*
{
8
}}
\put
(-172,7.5)
{
\circle*
{
8
}}
}}
}}
\put
(-263,
106
)
{
a
}
\put
(-263,
98
)
{
a
}
\put
(-89,
106
)
{
b
}
\put
(-89,
98
)
{
b
}
\put
(-175,5)
{
c
}
\put
(-175,5)
{
c
}
\end{picture}
\end{picture}
\end{tabular}
\end{tabular}
...
@@ -282,9 +282,10 @@ First the positions $M_j$ of the prominent local maxima of the gradient
...
@@ -282,9 +282,10 @@ First the positions $M_j$ of the prominent local maxima of the gradient
magnitude found under the stroke are sorted from the highest to the lowest.
magnitude found under the stroke are sorted from the highest to the lowest.
For each of them the main detection process is run with three modifications:
For each of them the main detection process is run with three modifications:
\begin{enumerate}
\begin{enumerate}
\item
the initial detection takes
$
M
_
j
$
and the orthogonal direction
$
AB
_
\perp
$
\item
the initial detection takes
$
M
_
j
$
and the orthogonal direction
to the stroke as input to build a static scan of fixed width
$
\vec
{
AB
}_
\perp
$
to the stroke as input to build a static scan of fixed width
$
\varepsilon
_{
ini
}$
, and
$
M
_
j
$
is used as start point of the blurred segment;
$
2
~
\varepsilon
_{
ini
}$
, and
$
M
_
j
$
is used as start point of the blurred
segment;
\item
the occupancy mask is filled in with the points of the detected blurred
\item
the occupancy mask is filled in with the points of the detected blurred
segments
$
\mathcal
{
B
}_
j''
$
at the end of each successful detection;
segments
$
\mathcal
{
B
}_
j''
$
at the end of each successful detection;
\item
points marked as occupied are rejected when selecting candidates for the
\item
points marked as occupied are rejected when selecting candidates for the
...
@@ -357,21 +358,36 @@ to collect all the segments found under the stroke.
...
@@ -357,21 +358,36 @@ to collect all the segments found under the stroke.
\input
{
Fig
_
method/algoAuto
}
\input
{
Fig
_
method/algoAuto
}
The performance of the detector is illustrated in
\RefFig
{
fig:evalAuto
}
b
\RefFig
{
fig:evalAuto
}
b gives an idea of the automatic detection performance.
or in
\RefFig
{
fig:noisy
}
where
hardly perceptible edges are detected
in this
In the example of
\RefFig
{
fig:noisy
}
,
hardly perceptible edges are detected
quite textured image. When the initial value of the assigned width is small,
despite of a quite textured context.
short edges are detected edges. Longer edges are detect
ed
if
the initial
Unsurpringly the length of the detected edges is link
ed
to
the initial
assigned width
is larger, but the found segments incorporate a lot of
value of the
assigned width
, but a large value also augments the rate
interfering outliers.
of
interfering outliers
insertion
.
\begin{figure}
[h]
\begin{figure}
[h]
\center
\center
\begin{tabular}
{
c@
{
\hspace
{
0.
2
cm
}}
c@
{
\hspace
{
0.
2
cm
}}
c
}
\begin{tabular}
{
c@
{
\hspace
{
0.
1
cm
}}
c@
{
\hspace
{
0.
1
cm
}}
c
}
\includegraphics
[width=0.32\textwidth]
{
Fig
_
method/parpaings.png
}
&
\includegraphics
[width=0.32\textwidth]
{
Fig
_
method/parpaings.png
}
&
\includegraphics
[width=0.32\textwidth]
{
Fig
_
method/parpaings2.png
}
&
\includegraphics
[width=0.32\textwidth]
{
Fig
_
method/parpaings2.png
}
&
\includegraphics
[width=0.32\textwidth]
{
Fig
_
method/parpaings3.png
}
\includegraphics
[width=0.32\textwidth]
{
Fig
_
method/parpaings3.png
}
\end{tabular}
\end{tabular}
\caption
{
Automatic detection of blurred segments on a quite texture image.
}
\begin{picture}
(1,1)(0,0)
{
\color
{
dwhite
}{
\put
(-286,-25.5)
{
\circle*
{
8
}}
\put
(-171,-25.5)
{
\circle*
{
8
}}
\put
(-58,-25.5)
{
\circle*
{
8
}}
}}
\put
(-288.5,-28)
{
a
}
\put
(-173.5,-28)
{
b
}
\put
(-60.5,-28)
{
c
}
\end{picture}
\caption
{
Automatic detection of blurred segments on a textured image.
a) the input image,
b) automatic detection result with initial assigned width set
to 3 pixels,
c) automatic detection result with initial assigned width set
to 8 pixels.
}
\label
{
fig:noisy
}
\label
{
fig:noisy
}
\end{figure}
\end{figure}
...
...
This diff is collapsed.
Click to expand it.
Article/notions.tex
+
22
−
22
View file @
98e75cff
...
@@ -121,21 +121,20 @@ At each iteration $i$, the scans $S_i$ and $S_{-i}$ are successively processed.
...
@@ -121,21 +121,20 @@ At each iteration $i$, the scans $S_i$ and $S_{-i}$ are successively processed.
A directional scan can be defined by its start scan
$
S
_
0
$
.
A directional scan can be defined by its start scan
$
S
_
0
$
.
If
$
A
(
x
_
A,y
_
A
)
$
and
$
B
(
x
_
B,y
_
B
)
$
are the end points of
$
S
_
0
$
,
If
$
A
(
x
_
A,y
_
A
)
$
and
$
B
(
x
_
B,y
_
B
)
$
are the end points of
$
S
_
0
$
,
the scan strip is defined by :
and if we note
$
\delta
_
x
=
x
_
B
-
x
_
A
$
,
$
\delta
_
y
=
y
_
B
-
y
_
A
$
,
$
c
_
1
=
\delta
_
x
\cdot
x
_
A
+
\delta
_
y
\cdot
y
_
A
$
,
$
c
_
2
=
\delta
_
x
\cdot
x
_
B
+
\delta
_
y
\cdot
y
_
B
$
and
$
\nu
_{
AB
}
=
max
(
|
\delta
_
x|, |
\delta
_
y|
)
$
, it is then defined by
the following scan strip
$
\mathcal
{
D
}^{
A,B
}$
and scan lines
$
\mathcal
{
N
}_
i
^{
A,B
}$
:
\begin{equation}
\begin{equation}
\mathcal
{
D
}
(A,B) =
\left\{
\begin{array}
{
l
}
\mathcal
{
L
}
(
\delta
_
x,~
\delta
_
y,~ min (c1,c2),~ 1 + |c
_
1-c
_
2|)
\mathcal
{
D
}^{
A,B
}
=
\end{equation}
\mathcal
{
L
}
(
\delta
_
x,~
\delta
_
y,~ min (c1,c2),~ 1 + |c
_
1-c
_
2|)
\\
\noindent
\mathcal
{
N
}_
i
^{
A,B
}
=
\mathcal
{
L
}
(
\delta
_
y,~ -
\delta
_
x,~
where
$
\delta
_
x
=
x
_
B
-
x
_
A
$
,
$
\delta
_
y
=
y
_
B
-
y
_
A
$
,
$
c
_
1
=
\delta
_
x
\cdot
x
_
A
+
\delta
_
y
\cdot
y
_
A
$
and
$
c
_
2
=
\delta
_
x
\cdot
x
_
B
+
\delta
_
y
\cdot
y
_
B
$
.
The scan line
$
\mathcal
{
N
}_
i
$
is then defined by :
\begin{equation}
\mathcal
{
N
}_
i(A,B) =
\mathcal
{
L
}
(
\delta
_
y,~ -
\delta
_
x,~
\delta
_
y
\cdot
x
_
A -
\delta
_
x
\cdot
y
_
A + i
\cdot
\nu
_{
AB
}
,~
\nu
_{
AB
}
)
\delta
_
y
\cdot
x
_
A -
\delta
_
x
\cdot
y
_
A + i
\cdot
\nu
_{
AB
}
,~
\nu
_{
AB
}
)
\end{array}
\right
.
\end{equation}
\end{equation}
where
$
\nu
_{
AB
}
=
max
(
|
\delta
_
x|, |
\delta
_
y|
)
$
%The scan lines length is $d_\infty(AB)$ or $d_\infty(AB)-1$, where $d_\infty$
%The scan lines length is $d_\infty(AB)$ or $d_\infty(AB)-1$, where $d_\infty$
%is the chessboard distance ($d_\infty = max (|d_x|,|d_y|)$).
%is the chessboard distance ($d_\infty = max (|d_x|,|d_y|)$).
...
@@ -143,15 +142,16 @@ where $\nu_{AB} = max (|\delta_x|, |\delta_y|)$
...
@@ -143,15 +142,16 @@ where $\nu_{AB} = max (|\delta_x|, |\delta_y|)$
%as the image bounds should also be processed anyway.
%as the image bounds should also be processed anyway.
A directional scan can also be defined by its central point
$
C
(
x
_
C,y
_
C
)
$
,
A directional scan can also be defined by its central point
$
C
(
x
_
C,y
_
C
)
$
,
its direction
$
\vec
{
D
}
(
X
_
D,Y
_
D
)
$
and its width
$
w
$
. The scan strip is :
its direction
$
\vec
{
D
}
(
X
_
D,Y
_
D
)
$
and its width
$
w
$
. If we note
\begin{equation}
$
c
_
3
=
x
_
C
\cdot
Y
_
D
-
y
_
C
\cdot
X
_
D
$
and
\mathcal
{
D
}
(C,
\vec
{
D
}
,w)
$
c
_
4
=
X
_
D
\cdot
x
_
C
+
Y
_
D
\cdot
y
_
C
$
, it is then defined by
=
\mathcal
{
L
}
(Y
_
D,~ -X
_
D,~ x
_
C
\cdot
Y
_
D - y
_
C
\cdot
X
_
D - w / 2,~ w)
the following scan strip
$
\mathcal
{
D
}^{
C,
\vec
{
D
}
,w
}$
and scan lines
\end{equation}
$
\mathcal
{
N
}_
i
^{
C,
\vec
{
D
}
,w
}$
:
\noindent
and the scan line
$
\mathcal
{
N
}_
i
(
C,
\vec
{
D
}
,w
)
$
:
\begin{equation}
\begin{equation}
\mathcal
{
N
}_
i(C,
\vec
{
D
}
,w) =
\mathcal
{
L
}
(X
_
D,~ Y
_
D,~
\left\{
\begin{array}
{
l
}
X
_
D
\cdot
x
_
C + Y
_
D
\cdot
y
_
C - w / 2 + i
\cdot
w,~ max (|X
_
D|,|Y
_
D|)
\mathcal
{
D
}^{
C,
\vec
{
D
}
,w
}
=
\mathcal
{
L
}
(Y
_
D,~ -X
_
D,~ c
_
3 - w / 2,~ w)
\\
\mathcal
{
N
}_
i
^{
C,
\vec
{
D
}
,w
}
=
\mathcal
{
L
}
(X
_
D,~ Y
_
D,~
c
_
4 - w / 2 + i
\cdot
w,~ max (|X
_
D|,|Y
_
D|)
\end{array}
\right
.
\end{equation}
\end{equation}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment