Skip to content
Snippets Groups Projects
Commit f10f18a2 authored by even's avatar even
Browse files

Article structure

parent 68173e96
No related branches found
No related tags found
No related merge requests found
all:
@echo "ps pdf release"
make release
ps:
pdflatex main
pdf:
pdflatex main
bibtex main
pdflatex main
pdflatex main
release:
pdflatex main
bibtex main
pdflatex main
pdflatex main
clean:
rm -f main.pdf main.ps main.dvi main.log main.bbl main.blg main.aux *~
\begin{abstract}
Penser \`a prendre du beurre sal\'e \`a la biocoop.
\end{abstract}
@inproceedings{KerautretEven09,
title = {Blurred segments in gray level images for
interactive line extraction},
volume = {5852},
booktitle = {Proceedings of the 13th {IWCIA}},
publisher = {Springer},
author = {Kerautret, Bertrand and Even, Philippe},
editor = {Wiederhold, P. and Barneva, R. P.},
month = nov,
year = {2009},
series = {{LNCS}},
pages = {176--186}
}
@inproceedings{Debled05,
title = {Blurred Segments Decomposition in Linear Time},
author = {Debled-Rennesson, Isabelle and Feschet, Fabien and
Rouyer-Degli, Jocelyne},
booktitle = {Proc. of Int. Conf. on DGCI},
year = {2005},
editor = {Andres, E. and Damiand, G. and Lienhardt, P.},
volume = {3429},
series = {LNCS},
pages = {371-382},
optaddress = {Poitiers, France},
month = {April},
publisher = {Springer}
}
@article{Buzer07,
title = "A simple algorithm for digital line recognition
in the general case",
author = "Buzer, Lilian",
journal = "Pattern Recognition",
volume = "40",
number = "6",
pages = "1675--1684",
year = "2007",
doi = "DOI: 10.1016/j.patcog.2006.10.005"
}
@article{EvenMalavaud00,
author = {Even, Philippe and Malavaud, Anne},
title = {Semi-automated edge segment specification for an interactive
modelling system of robot environments},
journal = {International Archives of Photogrammetry and Remote Sensing},
year = {2000},
number = {B5},
pages = {222-229},
volume = {33}
}
@article{AubryAl17,
author = {Aubry, Nicolas and Kerautret, Bertrand and Even, Philippe
and Debled-Rennesson, Isabelle},
title = {Photometric intensity profiles analysis for thick segment
recognition and geometric measures},
journal = {Mathematical Morphology: Theory and Applications},
year = {2017},
number = {2},
pages = {35-54}
}
@article{Melkman87,
author="Melkman, Avraham A.",
title="On-line construction of the convex hull of a simple polyline.",
journal="Information Processing Letters",
volume="25",
number="1",
year="1987",
month="April",
pages="11--12"
}
\section{Conclusion and perspectives}
Gains importants en efficacit\'e.
Tentative d'estimation de la largeur du segment, qui fiabilise
l'estimation de l'orientation (plus de segments en travers).
Scans directionnels adaptatifs : une solution au probl\`eme de
la non pr\'edictibilit\'e de l'orientation.
D\'efauts persistants :
\begin{itemize}
\item L'\'epaisseur trouv\'ee n'est pas certifi\'ee.
\item Le r\'esultat d\'epend des conditions initiales.
Ca reste une m\'ethode instable, m\^eme si la duplication de la premi\`ere
\'etape a permis de gagner en stabilit\'e.
\item On n'est pas \`a l'abri d'un contour voisin qui vient perturber
la d\'etection initiale ou l'affinement.
Les filtres en fin de tracking sont l\`a pour soigner, pas pour gu\'erir.
\end{itemize}
Perspectives : validation sur contextes applicatifs.
\section*{Acknowledgements}
This work was supported by La Cabane au Darou.
\section{Experiments}
Mettre en valeur les gains obtenus par rapport \`a la version pr\'ec\'edente
avec des comparatifs en temps d'ex\'ecution et en qualit\'e de d\'etection
avec notamment une meilleure estimation de l'orientation.
D\'efauts persistants :
\begin{itemize}
\item L'\'epaisseur trouv\'ee n'est pas certifi\'ee.
\item Le r\'esultat d\'epend des conditions initiales.
Ca reste une m\'ethode instable, m\^eme si la duplication de la premi\`ere
\'etape a permis de gagner en stabilit\'e.
\item On n'est pas \`a l'abri d'un contour voisin qui vient perturber
la d\'etection initiale ou l'affinement.
Les filtres en fin de tracking sont l\`a pour soigner, pas pour gu\'erir.
\end{itemize}
\section{Introduction}
\subsection{Motivations}
Straight edge detection is a preliminary step of many image analysis
processes. Therefore it is always an active reasearch topic centered
on the quest of still faster, more accurate or more robust-to-noise
methods.
{\it TOWRITE : petit \'etat de l'art en r\'esumant IWCIA'09 et en ajoutant
quelques id\'ees perso (Hough, local, ...).
Parameter-space-based methods : robust to noise, well suited to
supervided context \cite{EvenMalavaud00}.
Most of works aim at reducing their time complexity. }
These methods rarely provide a direct measure of the quality of the output
edge, such as sharpness, connectivity or scattering. Some information may
often be drawn from their specific context, for example through
an analysis of the peak in a Hough transform accumulator, or ...
In digital geometry, the notion of blurred segment \cite{Debled05,Buzer07}
was introduced to cope with the image noise or other sources of
imperfections from the real world.
Our work aims at designing a flexible tool to detect such blurred segment
in gray-level images for as well supervised as unsupervised contexts.
We seek for user-friendly solutions with ideally no parameter to set,
or at least quite few values with intuitive meaning to an end user.
\subsection{Method overview and previous work}
The method we propose is based on a first rough detection in a local area
of the image either defined by the user in supervised context or blindly
explored in automatic mode. The goal is to disclose the presence of an edge.
Therefore, a simple test as the gradient maximal value is performed.
In case of success, refinement steps are run through an exploration of
the image in the direction of the detected edge.
In order to prevent local disturbances, for instance the intersection with
a sharper edge, all the local gradient maxima are successively tested,
and the gradient orientation consistency is checked.
We already designed and experimented an exploratory detector
\cite{KerautretEven09}.
Despite of good performances obtained compared
to other methods from the literature, several drawbacks remained.
At first, a fixed width value was set by the user according to the
application requirements, and detected segments were embedded in that
fixed tolerence whatever their dispersion be. When this dispersion is low,
the blurred segment is free to shiff sidewards, or worst, to rotate, thus
degrading the provided position and rotation measures.
Then two refinement steps were arbitrarily run to cope with most of
the tested data, uselessly when the first one was successfull.
Beyond, there was no guarantee that this could treat all kinds
of data. The search direction is fixed by the detected direction at the
former step, and there is necessarily a limit on this direction
accuracy - at least linked to the restricted directions encoded
in a limited grid - so that other steps would have been necessary
to deal with high resolution images.
Our study relies only on the use of the image gradient, as it provides a
good information on the signal dynamics, and hence the presence of edges.
Trials were made to use also the intensity signal though expensive
correlation techniques, but it was mostly successful for tracking objects
with stable appearance such as metallic pipes \cite{AubryAl17}.
Organisation of the paper : TO WRITE.
This diff is collapsed.
\newcommand{\RefFigure}[1]{Fig.\,\ref{#1}}
\newcommand{\RefSection}[1]{Section\,\ref{#1}}
\newcommand{\RefTab}[1]{Tab.\,\ref{#1}}
\documentclass[runningheads]{llncs}
%\usepackage[utf8]{inputenc}
%\usepackage[T1]{fontenc}
\usepackage{graphicx}
\graphicspath{{./images/}{./images/introduction}}
\usepackage[ruled,vlined]{algorithm2e}
\usepackage{amsmath}
\usepackage{amssymb}
\input{macros}
\begin{document}
\begin{frontmatter}
\title{Straight edge detection
based on an adaptive directional tracking of blurred segments}
\author{Philippe Even\inst{1} \and
Phuc Ngo\inst{1} \and
Bertrand Kerautret\inst{2}}
\authorrunning{P. Even et al.}
\institute{Universit\'e de Lorraine, LORIA, UMR 7503, Nancy, France
\email{philippe.even,hoai-diem-phuc.ngo\{at\}loria.fr}
\and Universit\'e de Lyon 2, LIRIS, Lyon, France
\email{bertrand.kerautret\{at\}univ-lyon2.fr}}
\maketitle
\begin{abstract}
TOWRITE.
\keywords{Line detection \and discrete geometry \and TOCOMPLETE.}
\end{abstract}
\end{frontmatter}
\input{intro}
\input{notions}
\input{method}
\input{expe}
\input{conclusion}
%\section*{References}
\bibliographystyle{splncs04}
\bibliography{biblio}
\end{document}
\section{The detection method}
\subsection{Workflow of the detection process}
The blurred segment detector workflow is summerized
in the following figure.
\begin{center}
\begin{picture}(340,34)(0,-4)
%\put(0,-2.5){\framebox(340,35)}
\put(-2,18){\scriptsize $(A,B)$}
\put(-2,15){\vector(1,0){24}}
\put(24,0){\framebox(56,30)}
\put(24,15){\makebox(56,10){Initial}}
\put(24,3){\makebox(56,10){detection}}
\put(86,18){\scriptsize $S_{i}$}
\put(80,15){\vector(1,0){22}}
%\put(102,0){\framebox(56,30)}
\multiput(102,15)(28,9){2}{\line(3,-1){28}}
\multiput(102,15)(28,-9){2}{\line(3,1){28}}
\put(100,0){\makebox(60,30){Valid ?}}
\put(133,-2){\scriptsize $0$}
\put(130,6){\vector(0,-1){10}}
\put(159,18){\scriptsize $(C,\vec{D})$}
\put(158,15){\vector(1,0){28}}
\put(186,0){\framebox(56,30)}
\put(186,15){\makebox(56,10){Fine}}
\put(186,3){\makebox(60,10){tracking}}
\put(250,18){\scriptsize $S_{f}$}
\put(242,15){\vector(1,0){24}}
\put(266,0){\framebox(56,30){Filtering}}
\put(330,18){\scriptsize $S_{o}$}
\put(322,15){\vector(1,0){22}}
\end{picture}
\end{center}
The fast track stage consists in building and extending a blurred segment
$S_i$ based on the highest gradient points on each line of the directional
scanner based on an input segment $AB$.
Validity tests based on the length or sparsity of $S_i$ are applied to
decide of the detection poursuit. In case of positive response, the
position and direction of this initial blurred segment is extracted.
The fine track stage consists on building and extending a blurred segment
$S_f$ based on points that correspond to local maxima of the gradient,
ranked by magnitude order, and with gradient direction close to a reference
gradient direction at the segment first point.
During that step a thinning procedure is run :
the assigned width of the BS is progressively brought to
the detected BS minimal width.
The fine track output segment is finally filtered to remove artifacts
and outliers, and a solution blurred segment $S_o$ is provided.
\subsection{Implementation details}
A directional scanner is encoded as an iterator that provides successively
all the scan lines.
Description de l'interface pour la d\'etection supervis\'ee d'un segment.
Description de la d\'etection multiple.
Description de la d\'etection automatique.
\section{Base notions}
\subsection{Blurred segment}
Our work relies on the notion of digital straight line
as classically defined in the digital geometry literature \cite{debled}.
Only the 2-dimensional case is considered here.
\begin{definition}
A digital line $\cal D$ with integer parameters $(a,b,c,\nu)$ is the set
of points $P(x,y)$ of $\mathbb{Z}^2$ that satisfy : $0 \leq ax + by - c < \nu$.
\end{definition}
The parameter $\nu$ is the width of the digital line.
If $\nu = max (|a|, |b|)$, $\cal D$ is the narrowest 8-connected line
and is called a naive line.
\begin{definition}
A blurred segment of width $\nu$ is a set ${\cal S}_\nu$ of points in
$\mathbb{Z}^2$ that all belong to a digital line of width $\nu$.
\end{definition}
\begin{picture}(300,20)
\framebox(300,20){Exemple de segment flou ? (\c ca va finir par lasser)}
\end{picture}
To construct a blurred segment we use a liner time algorithm based on the
incremental growth of the convex hull of the input points using Melkman
algorithm \cite{Melkman87}. Points are added while the convex hull width
is less than the blurred segment assigned width.
\subsection{Directional scan}
A directional scan is a partition of a digital straight line ${\cal S}$,
called the {\it scan strip}, into naive straight line segments ${\cal L}_i$,
that are orthogonal to ${\cal S}$. The segments, called {\it scan lines}, are
developed on each side of a central scan line ${\cal S}_0$, and labelled
with their manhattan distance ($d_1 = |d_x| + |d_y|$) to ${\cal L}_0$ and
a positive (resp. negative) sign if their are on the left (resp. right)
of ${\cal L}_0$.
\begin{picture}(300,20)
\framebox(300,20){Exemple de directional scan}
\end{picture}
The directional scan can be defined by its central scan line ${\cal L}_0$.
If $A(x_A,y_A)$ and $B(x_B,y_B)$ are the end points of this scan line,
the scan strip is defined by :
\centerline{
${\cal S}(A,B) = {\cal D}(a, b, c, \nu)$, with
$\left\{ \begin{array}{l}
a = x_B - x_A \\
b = y_B - y_A \\
\nu = 1 + |c_2 - c_1| \\
c = min (c_1, c_2)
\end{array} \right.$
}
\noindent
where $c_1 = a\cdot x_A + b\cdot y_A$ and $c_2 = a\cdot x_B + b\cdot y_B$.
The scan line $\cal{L}_i(A,B)$ is then defined by :
\centerline{
${\cal L}_i(A,B) = {\cal S}(A,B) \cap {\cal D}(a, b, c, \nu)$, with
$\left\{ \begin{array}{l}
a = y_B - y_A \\
b = x_A - x_B \\
\nu = max (|a|,|b|) \\
c = a\cdot x_A + b\cdot y_A + i \cdot \nu
\end{array} \right.$
}
The scan lines length is $d_\infty(AB)$ or $d_\infty(AB)-1$, where $d_\infty$
is the chessboard distance ($d_\infty = max (|d_x|,|d_y|)$).
In practice, this difference of length between scan lines is not a drawback,
as the image bounds should also be processed anyway.
The directional scan can also be defined by its central point $C$, its
direction $\vec{D}$ and its width $w$. TO BE DEVELOPED.
\subsection{Adaptive directional scan}
Notions \`a d\'evelopper :
\begin{itemize}
\item Direction de scan
\item Epaisseur de consigne du SF
\item Largeur optimale du SF
\end{itemize}
Poser le pb : la direction est incompl\`etement estim\'ee, d'o\`u un risque
de sortie de scan.
\begin{picture}(300,20)
\framebox(300,20){Illustration d'une sortie de scan avec les diff\'erentes
\'epaisseurs en jeu}
\end{picture}
La direction du segment ne peut \^etre connue qu'a posteriori.
La direction d'une droite discr\`ete s'affine au fur et \`a mesure de
son d\'eveloppement.
Ainsi en va t-il des segments flous (a fortiori).
Il faut donc r\'eactualiser la direction du scan.
$N$ scans reste limit\'e.
D'o\`u le scan adaptatif $\rightarrow$ r\'eorientation de $\cal S$.
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment