Newer
Older
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import json
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def load_data(msms_filet_path='data/msms.txt', score_treshold=70):
data = pd.read_csv(msms_filet_path, sep='\t')
data_compact = data[['Sequence', 'Length', 'Charge', 'Retention time', 'Score', 'Matches', 'Intensities']]
data_filtered = data_compact[data_compact['Score'] > score_treshold]
data_filtered = data_filtered[data_filtered['Length'] < 26]
data_filtered['Spectra'] = data_filtered.apply(lambda x: filter_intensity(x.Matches, x.Intensities), axis=1)
return data_filtered[['Sequence', 'Length', 'Charge', 'Retention time', 'Score', 'Spectra']]
def convert(l):
return [num_int for num_str in l.split() for num_int in (
lambda x: [float(x.replace('[', '').replace(']', ''))] if x.replace('.', '').replace('[', '').replace(']',
'').replace(
'e+', '').isdigit() else [])(
num_str)]
def filter_intensity(matches, int_exp):
frag_name = ['y1', 'y2', 'y3', 'y4', 'y5', 'y6', 'y7', 'y8', 'y9', 'y10', 'y11', 'y12', 'y13', 'y14', 'y15', 'y16',
'y17', 'y18', 'y19', 'y20', 'y21', 'y22', 'y23', 'y24',
'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'b10', 'b11', 'b12', 'b13', 'b14', 'b15', 'b16',
'b17', 'b18', 'b19', 'b20', 'b21', 'b22', 'b23', 'b24',
'y1(2+)', 'y2(2+)', 'y3(2+)', 'y4(2+)', 'y5(2+)', 'y6(2+)', 'y7(2+)', 'y8(2+)', 'y9(2+)', 'y10(2+)',
'y11(2+)', 'y12(2+)', 'y13(2+)', 'y14(2+)', 'y15(2+)', 'y16(2+)',
'y17(2+)', 'y18(2+)', 'y19(2+)', 'y20(2+)', 'y21(2+)', 'y22(2+)', 'y23(2+)', 'y24(2+)',
'b1(2+)', 'b2(2+)', 'b3(2+)', 'b4(2+)', 'b5(2+)', 'b6(2+)', 'b7(2+)', 'b8(2+)', 'b9(2+)', 'b10(2+)',
'b11(2+)', 'b12(2+)', 'b13(2+)', 'b14(2+)', 'b15(2+)', 'b16(2+)',
'b17(2+)', 'b18(2+)', 'b19(2+)', 'b20(2+)', 'b21(2+)', 'b22(2+)', 'b23(2+)', 'b24(2+)',
'y1(3+)', 'y2(3+)', 'y3(3+)', 'y4(3+)', 'y5(3+)', 'y6(3+)', 'y7(3+)', 'y8(3+)', 'y9(3+)',
'y10(3+)', 'y11(3+)', 'y12(3+)', 'y13(3+)', 'y14(3+)', 'y15(3+)', 'y16(3+)', 'y17(3+)', 'y18(3+)',
'y19(3+)', 'y20(3+)', 'y21(3+)', 'y22(3+)', 'y23(3+)',
'y24(3+)',
'b1(3+)', 'b2(3+)', 'b3(3+)', 'b4(3+)', 'b5(3+)', 'b6(3+)', 'b7(3+)', 'b8(3+)', 'b9(3+)', 'b10(3+)',
'b11(3+)', 'b12(3+)', 'b13(3+)', 'b14(3+)', 'b15(3+)', 'b16(3+)',
'b17(3+)', 'b18(3+)', 'b19(3+)', 'b20(3+)', 'b21(3+)', 'b22(3+)', 'b23(3+)', 'b24(3+)'
]
intensity = np.zeros(len(frag_name))
matches = matches.split(";")
int_exp = int_exp.split(";")
ind1 = np.where(np.isin(matches, frag_name))[0].tolist()
ind2 = np.where(np.isin(frag_name, matches))[0].tolist()
intensity[ind2] = np.array(int_exp)[ind1]
return intensity
def merge_dataset_by_name(list_names):
list_dataset = []
for name in list_names:
list_dataset.append(pd.read_csv(name))
merged_dataset = pd.concat(list_dataset)
return merged_dataset
import matplotlib.pyplot as plt
def mscatter(x,y, ax=None, m=None, **kw):
import matplotlib.markers as mmarkers
ax = ax or plt.gca()
sc = ax.scatter(x,y,**kw)
if (m is not None) and (len(m)==len(x)):
paths = []
for marker in m:
if isinstance(marker, mmarkers.MarkerStyle):
marker_obj = marker
else:
marker_obj = mmarkers.MarkerStyle(marker)
path = marker_obj.get_path().transformed(
marker_obj.get_transform())
paths.append(path)
sc.set_paths(paths)
return sc
#data gradient 10 :
# 16/01 20/01 30/01
#data gradient 3 :
# 17/01 23/01 24/01
data_1 = pd.read_pickle('database/data_DIA_16_01_aligned.pkl')
data_2 = pd.read_pickle('database/data_DIA_17_01_aligned.pkl')
data_3 = pd.read_pickle('database/data_DIA_20_01_aligned.pkl')
data_4 = pd.read_pickle('database/data_DIA_23_01_aligned.pkl')
data_5 = pd.read_pickle('database/data_DIA_24_01_aligned.pkl')
data_6 = pd.read_pickle('database/data_DIA_30_01_aligned.pkl')
data = pd.concat([data_1, data_2, data_3, data_4, data_5, data_6], ignore_index=True)
num_total = len(data)
train_size = np.floor(0.8*num_total)
list_gr=[]
train_set = []
test_set=[]
s = 0
groups = data.groupby('Sequence')
for seq, gr in groups:
list_gr.append(gr)
random.shuffle(list_gr)
for gr in list_gr :
if s < train_size :
train_set.append(gr)
s+= len(gr)
else :
test_set.append(gr)
dataset_train = pd.concat(train_set).reset_index(drop=True)
dataset_test = pd.concat(test_set).reset_index(drop=True)
dataset_train.to_pickle('database/data_DIA_ISA_55_train.pkl')
dataset_test.to_pickle('database/data_DIA_ISA_55_test.pkl')
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# err_rt = []
# err_spec = []
# nb_data = []
# nb_gr = []
# for i in range(0, 120, 5):
# print(i)
# data_2 = load_data('data/Custom_dataset/msmsHBM_UCGTs.txt', i)
# data_1 = load_data('data/Custom_dataset/msmsHBM_P450s.txt', i)
# data_3 = load_data('data/Custom_dataset/msmsMkBM_P450s.txt', i)
# data = pd.concat([data_1, data_2, data_3], ignore_index=True)
# groups = data.groupby('Sequence')
# avg_err = 0
# avg_cosim = 0
# nb_data.append(len(data))
# nb_gr.append(len(groups))
# for seq, gr in groups:
# mean = gr['Retention time'].mean()
# mean_spec = np.mean(gr['Spectra'], axis=0)
# cos_sim = gr['Spectra'].apply(
# lambda x: (np.dot(x, mean_spec) / (np.linalg.norm(x) * np.linalg.norm(mean_spec)))).mean()
# err = abs(gr['Retention time'] - mean).mean()
# avg_err += err * gr.shape[0]
# avg_cosim += cos_sim * gr.shape[0]
# avg_err = avg_err / data.shape[0]
# avg_cosim = avg_cosim / data.shape[0]
# err_rt.append(avg_err)
# err_spec.append(avg_cosim)
#
# fig, axs = plt.subplots(2, 2)
# axs[0, 0].scatter(range(0, 120, 5), 1 -2 * np.arccos(err_spec)/np.pi)
# axs[1, 0].scatter(range(0, 120, 5), err_rt)
# axs[0, 1].scatter(range(0, 120, 5), nb_gr)
# axs[1, 1].scatter(range(0, 120, 5), nb_data)
# axs[0, 0].set_title('spectral angle')
# axs[1, 0].set_title('avg rt err')
# axs[0, 1].set_title('nb groupes')
# axs[1, 1].set_title('nb data')
# plt.savefig('fig_data_full.png')
# data_1 = load_data('data/Custom_dataset/msms_MsBM_UGTs.txt', 55)
# data_2 = load_data('data/Custom_dataset/msmsHBM_UCGTs.txt', 55)
# data_3 = load_data('data/Custom_dataset/msmsMkBM_P450s.txt', 55)
# data = pd.concat([data_1, data_2, data_3], ignore_index=True)
# data_2 = load_data('data/Custom_dataset/msmsHBM_UCGTs.txt', 55)
# data_1 = load_data('data/Custom_dataset/msmsHBM_P450s.txt', 55)
# data_3 = load_data('data/Custom_dataset/msmsMkBM_P450s.txt', 55)
# data = pd.concat([data_1, data_2, data_3], ignore_index=True)
# data.to_csv('database/data_3_first_55.csv')
# pd.to_pickle(data,"database/data_all_type.pkl")
# data = pd.read_pickle("database/data_all_type.pkl")
# data['number comp'] = data['Spectra'].apply(lambda x: np.sum(x > 0.1))
# sizes_gr = []
#
# groups = data.groupby('Sequence')
# for seq, gr in groups:
# groups_2 = gr.groupby('Charge')
# for ch,gr_2 in groups_2 :
# array = np.stack(gr_2['Spectra'])
# sizes_gr.append(array.shape[0])
# if array.shape[0] > 10:
#
# standardized_data = (array - array.mean(axis=0)) / array.std(axis=0)
# standardized_data = np.nan_to_num(standardized_data)
# covariance_matrix = np.cov(standardized_data, ddof=1, rowvar=False, dtype=np.float32)
#
# eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
#
# # np.argsort can only provide lowest to highest; use [::-1] to reverse the list
# order_of_importance = np.argsort(eigenvalues)[::-1]
#
# # utilize the sort order to sort eigenvalues and eigenvectors
# sorted_eigenvalues = eigenvalues[order_of_importance]
# sorted_eigenvectors = eigenvectors[:, order_of_importance] # sort the columns
# # use sorted_eigenvalues to ensure the explained variances correspond to the eigenvectors
# explained_variance = sorted_eigenvalues / np.sum(sorted_eigenvalues)
#
# k = 2 # select the number of principal components
# reduced_data = np.matmul(standardized_data, sorted_eigenvectors[:, :k]) # transform the original data
#
# ### Step 7: Determine the Explained Variance
# total_explained_variance = sum(explained_variance[:k])
#
# ### Potential Next Steps: Iterate on the Number of Principal Components
# cm = plt.cm.get_cmap('RdYlBu')
# f, ( ax3, ax2) = plt.subplots(1, 2)
# # sc = mscatter(reduced_data[:, 0], reduced_data[:, 1], ax = ax1, m = mark[gr['Charge']], s=15, c=gr['Score'], vmin=50, vmax=250, cmap=cm)
# # ax1.text(0.25, 0, total_explained_variance,
# # horizontalalignment='center',
# # verticalalignment='center',
# # transform=ax1.transAxes)
# # f.colorbar(sc, ax=ax1)
#
# sc2 = mscatter(reduced_data[:, 0], reduced_data[:, 1], ax = ax2, s=5, c=gr_2['number comp'],
# vmin=min(gr['number comp']), vmax=max(gr['number comp']), cmap=cm)
# f.colorbar(sc2, ax=ax2)
#
# sc3 = mscatter(reduced_data[:, 0], reduced_data[:, 1], ax = ax3, s=5, c=gr_2['Score'], vmin=min(gr_2['Score']), vmax=max(gr_2['Score']), cmap=cm)
# f.colorbar(sc3, ax=ax3)
#
# plt.savefig('fig/pca/pca_' + seq + '_' + str(ch) + '.png')
# plt.close()