Newer
Older
import numpy as np
import pandas as pd
from loess.loess_1d import loess_1d
from dataloader import RT_Dataset
"A": 1,
"C": 2,
"D": 3,
"E": 4,
"F": 5,
"G": 6,
"H": 7,
"I": 8,
"K": 9,
"L": 10,
"M": 11,
"N": 12,
"P": 13,
"Q": 14,
"R": 15,
"S": 16,
"T": 17,
"V": 18,
"W": 19,
"Y": 20,
"CaC": 21,
"OxM": 22
}
ALPHABET_UNMOD_REV = {v: k for k, v in ALPHABET_UNMOD.items()}
def numerical_to_alphabetical(arr):
seq = ''
for i in range(len(arr)):
seq+=ALPHABET_UNMOD_REV[arr[i]]
return seq
def align(dataset, reference):
seq_common = dataset['Sequence']
seq_ref = seq_ref.tolist()
seq_common = seq_common.tolist()
seq_ref = [tuple(l) for l in seq_ref]
seq_common = [tuple(l) for l in seq_common]
ind_dict_ref = dict((k, i) for i, k in enumerate(seq_ref))
inter = set(ind_dict_ref).intersection(seq_common)
ind_dict_ref = [ind_dict_ref[x] for x in inter]
indices_common = dict((k, i) for i, k in enumerate(seq_common))
indices_common = [indices_common[x] for x in inter]
rt_ref = reference['Retention time'][ind_dict_ref].reset_index()
rt_data = dataset['Retention time'][indices_common].reset_index()
xout, yout, wout = loess_1d(np.array(rt_data['Retention time'].tolist()), np.array(rt_ref['Retention time'].tolist()),
xnew=dataset['Retention time'],
degree=1, frac=0.5,
npoints=None, rotate=False, sigy=None)
dataset['Retention time'] = yout
return dataset
data_ori = load_data('msms/msms30_01.txt').reset_index(drop=True)
# data_ori['sequence'] = data_ori['sequence'].map(numerical_to_alphabetical)
data_train = load_data('msms/msms16_01.txt').reset_index(drop=True)
# data_train = pd.read_pickle('database/data_DIA_16_01.pkl').reset_index(drop=True)
data_align.to_pickle('database/data_DIA_16_01_aligned30_01.pkl')
data_train = load_data('msms/msms17_01.txt').reset_index(drop=True)
# data_train = pd.read_pickle('database/data_DIA_17_01.pkl').reset_index(drop=True)
data_align.to_pickle('database/data_DIA_17_01_aligned30_01.pkl')
data_train = load_data('msms/msms20_01.txt').reset_index(drop=True)
# data_train = pd.read_pickle('database/data_DIA_20_01.pkl').reset_index(drop=True)
data_align.to_pickle('database/data_DIA_20_01_aligned30_01.pkl')
data_train = load_data('msms/msms23_01.txt').reset_index(drop=True)
# data_train = pd.read_pickle('database/data_DIA_23_01.pkl').reset_index(drop=True)
data_align.to_pickle('database/data_DIA_23_01_aligned30_01.pkl')
data_train = load_data('msms/msms24_01.txt').reset_index(drop=True)
# data_train = pd.read_pickle('database/data_DIA_24_01.pkl').reset_index(drop=True)
data_align.to_pickle('database/data_DIA_24_01_aligned30_01.pkl')
data_train = load_data('msms/msms30_01.txt').reset_index(drop=True)
# data_train = pd.read_pickle('database/data_DIA_30_01.pkl').reset_index(drop=True)
data_train.to_pickle('database/data_DIA_30_01_aligned30_01.pkl')
# plt.scatter(data_train['Retention time'], data_align['Retention time'], s=1)
# plt.savefig('test_align_2.png')
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#
#
# dataset_ref = pd.read_pickle('database/data_01_16_DIA_ISA_55.pkl')
# data_ref = Common_Dataset(dataset_ref, 25).data
# dataset_2 = pd.read_pickle('database/data_01_20_DIA_ISA_55.pkl')
# data_2 = Common_Dataset(dataset_2, 25).data
# dataset_3 = pd.read_pickle('database/data_01_17_DIA_ISA_55.pkl')
# data_3 = Common_Dataset(dataset_3, 25).data
# dataset_4 = pd.read_pickle('database/data_01_23_DIA_ISA_55.pkl')
# data_4 = Common_Dataset(dataset_4, 25).data
# data_align_3 = align(data_3, data_ref)
# data_align_4 = align(data_4, data_ref)
#
# data = pd.concat([data_ref, data_2, data_align_3, data_align_4], ignore_index=True)
# data = data.drop(columns='index')
# data['Sequence'] = data['Sequence'].map(numerical_to_alphabetical)
# num_data = data.shape[0]
# train_num = np.floor(num_data*0.8)
# train_size=0
# list_train=[]
# list_test=[]
# groups = data.groupby('Sequence')
# for seq, gr in groups:
#
# train_size+= gr.shape[0]
#
# if train_size>train_num:
# list_test.append(gr)
# else:
# list_train.append(gr)
#
#
# dataset_train = pd.concat(list_train, ignore_index=True)
# dataset_test = pd.concat(list_test, ignore_index=True)
# dataset_train.to_pickle('database/data_DIA_ISA_55_train.pkl')
# dataset_train.to_pickle('database/data_DIA_ISA_55_test.pkl')