Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
import pandas as pd
ALPHABET_UNMOD = {
"_": 0,
"A": 1,
"C": 2,
"D": 3,
"E": 4,
"F": 5,
"G": 6,
"H": 7,
"I": 8,
"K": 9,
"L": 10,
"M": 11,
"N": 12,
"P": 13,
"Q": 14,
"R": 15,
"S": 16,
"T": 17,
"V": 18,
"W": 19,
"Y": 20,
"CaC": 21,
"OxM": 22
}
IUPAC_VOCAB = {
"_": 0,
"<mask>": 1,
"<cls>": 2,
"<sep>": 3,
"<unk>": 4,
"A": 5,
"B": 6,
"C": 7,
"D": 8,
"E": 9,
"F": 10,
"G": 11,
"H": 12,
"I": 13,
"K": 14,
"L": 15,
"M": 16,
"N": 17,
"O": 18,
"P": 19,
"Q": 20,
"R": 21,
"S": 22,
"T": 23,
"U": 24,
"V": 25,
"W": 26,
"X": 27,
"Y": 28,
"Z": 29}
ALPHABET_UNMOD_REV = {v: k for k, v in ALPHABET_UNMOD.items()}
def padding(dataframe, columns, length):
def pad(x):
return x + (length - len(x) + 2 * x.count('-')) * '_'
for i in range(len(dataframe)):
if len(dataframe[columns][i]) > length + 2 * dataframe[columns][i].count('-'):
dataframe.drop(i)
dataframe[columns] = dataframe[columns].map(pad)
for i in range(len(dataframe)):
if len(dataframe[columns][i]) > length:
dataframe.drop(i)
def alphabetical_to_numerical(seq, vocab):
num = []
dec = 0
if vocab == 'unmod':
for i in range(len(seq) - 2 * seq.count('-')):
if seq[i + dec] != '-':
num.append(ALPHABET_UNMOD[seq[i + dec]])
else:
if seq[i + dec + 1:i + dec + 4] == 'CaC':
num.append(21)
elif seq[i + dec + 1:i + dec + 4] == 'OxM':
num.append(22)
else:
raise 'Modification not supported'
dec += 4
else :
for i in range(len(seq) - 2 * seq.count('-')):
if seq[i + dec] != '-':
num.append(ALPHABET_UNMOD[seq[i + dec]])
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
else:
if seq[i + dec + 1:i + dec + 4] == 'CaC':
num.append(21)
elif seq[i + dec + 1:i + dec + 4] == 'OxM':
num.append(22)
else:
raise 'Modification not supported'
dec += 4
return np.array(num)
def numerical_to_alphabetical(arr):
seq = ''
for i in range(len(arr)):
seq+=ALPHABET_UNMOD_REV[arr[i]]
return seq
def zero_to_minus(arr):
arr[arr <= 0.00001] = -1.
return arr
class Common_Dataset(Dataset):
def __init__(self, dataframe, length, pad=True, convert=True, vocab='unmod'):
print('Data loader Initialisation')
self.data = dataframe.reset_index()
if pad :
print('Padding')
padding(self.data, 'Sequence', length)
if convert :
print('Converting')
self.data['Sequence'] = self.data['Sequence'].map(lambda x: alphabetical_to_numerical(x, vocab))
self.data['Spectra'] = self.data['Spectra'].map(zero_to_minus)
def __getitem__(self, index: int):
seq = self.data['Sequence'][index]
rt = self.data['Retention time'][index]
intensity = self.data['Spectra'][index]
charge = self.data['Charge'][index]
return torch.tensor(seq), torch.tensor(charge), torch.tensor(rt).float(), torch.tensor(intensity)
def __len__(self) -> int:
return self.data.shape[0]
def load_data(path_train, path_val, path_test, batch_size, length, pad=False, convert=False, vocab = 'unmod'):
print('Loading data')
data_train = pd.read_pickle(path_train)
data_val = pd.read_pickle(path_val)
data_test = pd.read_pickle(path_test)
train = Common_Dataset(data_train, length, pad, convert, vocab)
test = Common_Dataset(data_val, length, pad, convert, vocab)
val = Common_Dataset(data_test, length, pad, convert, vocab)
train_loader = DataLoader(train, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val, batch_size=batch_size, shuffle=True)
return train_loader, val_loader, test_loader