Skip to content
Snippets Groups Projects
Select Git revision
  • b55e698e1198c12602ad0d0899efbef43e55abd6
  • main default protected
2 results

data_viz.py

Blame
  • data_viz.py 10.75 KiB
    import scipy as sp
    from sklearn.metrics import r2_score
    import matplotlib.pyplot as plt
    import numpy as np
    import random
    import pandas as pd
    import matplotlib.colors as mcolors
    
    from mass_prediction import compute_frag_mz_ration
    
    seq = 'YEEEFLR'
    def data(a):
        b=a+a
        return b
    
    # int = np.random.rand(174)
    
    names = ['b1(+)', 'y1(+)', 'b1(2+)', 'y1(2+)', 'b1(3+)', 'y1(3+)','b2(+)', 'y2(+)', 'b2(2+)', 'y2(2+)', 'b2(3+)', 'y2(3+)',
             'b3(+)', 'y3(+)', 'b3(2+)', 'y3(2+)', 'b3(3+)', 'y3(3+)', 'b4(+)', 'y4(+)', 'b4(2+)', 'y4(2+)', 'b4(3+)',
             'y4(3+)','b5(+)', 'y5(+)', 'b5(2+)', 'y5(2+)', 'b5(3+)', 'y5(3+)','b6(+)', 'y6(+)', 'b6(2+)', 'y6(2+)',
             'b6(3+)', 'y6(3+)','b7(+)', 'y7(+)', 'b7(2+)', 'y7(2+)', 'b7(3+)', 'y7(3+)','b8(+)', 'y8(+)', 'b8(2+)',
             'y8(2+)', 'b8(3+)', 'y8(3+)','b9(+)', 'y9(+)', 'b9(2+)', 'y9(2+)', 'b9(3+)', 'y9(3+)','b10(+)', 'y10(+)',
             'b10(2+)', 'y10(2+)', 'b10(3+)', 'y10(3+)','b11(+)', 'y11(+)', 'b11(2+)', 'y11(2+)', 'b11(3+)', 'y11(3+)',
             'b12(+)', 'y12(+)', 'b12(2+)', 'y12(2+)', 'b12(3+)', 'y12(3+)', 'b13(+)', 'y13(+)', 'b13(2+)', 'y13(2+)',
             'b13(3+)', 'y13(3+)','b14(+)', 'y14(+)', 'b14(2+)', 'y14(2+)', 'b14(3+)', 'y14(3+)','b15(+)', 'y15(+)',
             'b15(2+)', 'y15(2+)', 'b15(3+)', 'y15(3+)', 'b16(+)', 'y16(+)', 'b16(2+)', 'y16(2+)', 'b16(3+)', 'y16(3+)',
             'b17(+)', 'y17(+)', 'b17(2+)', 'y17(2+)', 'b17(3+)', 'y17(3+)','b18(+)', 'y18(+)', 'b18(2+)', 'y18(2+)',
             'b18(3+)', 'y18(3+)','b19(+)', 'y19(+)', 'b19(2+)', 'y19(2+)', 'b19(3+)', 'y19(3+)','b20(+)', 'y20(+)',
             'b20(2+)', 'y20(2+)', 'b20(3+)', 'y20(3+)','b21(+)', 'y21(+)', 'b21(2+)', 'y21(2+)', 'b21(3+)', 'y21(3+)',
             'b22(+)', 'y22(+)', 'b22(2+)', 'y22(2+)', 'b22(3+)', 'y22(3+)','b23(+)', 'y23(+)', 'b23(2+)', 'y23(2+)',
             'b23(3+)', 'y23(3+)','b24(+)', 'y24(+)', 'b24(2+)', 'y24(2+)', 'b24(3+)', 'y24(3+)','b25(+)', 'y25(+)',
             'b25(2+)', 'y25(2+)', 'b25(3+)', 'y25(3+)','b26(+)', 'y26(+)', 'b26(2+)', 'y26(2+)', 'b26(3+)', 'y26(3+)',
             'b27(+)', 'y27(+)', 'b27(2+)', 'y27(2+)', 'b27(3+)', 'y27(3+)','b28(+)', 'y28(+)', 'b28(2+)', 'y28(2+)',
             'b28(3+)', 'y28(3+)','b29(+)', 'y29(+)', 'b29(2+)', 'y29(2+)', 'b29(3+)', 'y29(3+)']
    
    names = np.array(names)
    
    def frag_spectra(int, seq):
        masses = compute_frag_mz_ration(seq,'mono')
        msk = [el!=-1. for el in int]
        # Choose some nice levels
        levels = int[msk]
        dates = masses[msk]
        # Create figure and plot a stem plot with the date
        fig, ax = plt.subplots(figsize=(8.8, 4), constrained_layout=True)
        ax.set(title=seq + " fragmentation spectra")
    
        ax.vlines(dates, 0, levels, color="tab:red")  # The vertical stems.
        ax.plot(dates, np.zeros_like(dates),
                color="k", markerfacecolor="w")  # Baseline and markers on it.
    
        # annotate lines
        for d, l, r in zip(dates, levels, names):
            ax.annotate(r, xy=(d, l),
                        xytext=(-3, np.sign(l) * 3), textcoords="offset points",
                        horizontalalignment="right",
                        verticalalignment="bottom" if l > 0 else "top")
    
    
        plt.setp(ax.get_xticklabels(), rotation=30, ha="right")
    
        # remove y axis and spines
        ax.yaxis.set_visible(False)
        ax.spines[["left", "top", "right"]].set_visible(False)
    
        ax.margins(y=0.1)
        plt.show()
    
    def frag_spectra_comparison(int_1, seq_1, int_2, seq_2=None):
        if seq_2 is None :
            seq_2 = seq_1
        masses_1 = compute_frag_mz_ration(seq_1,'mono')
        msk_1 = [el!=-1 for el in int_1]
        levels_1 = int_1[msk_1]
        dates_1 = masses_1[msk_1]
        names_1 = names[msk_1]
        masses_2 = compute_frag_mz_ration(seq_2, 'mono')
        msk_2 = [el != -1. for el in int_2]
        levels_2 = int_2[msk_2]
        dates_2 = masses_2[msk_2]
        names_2 = names[msk_2]
        # Create figure and plot a stem plot with the date
        fig, ax = plt.subplots(figsize=(8.8, 4), constrained_layout=True)
        ax.set(title=seq_1 + " / " +seq_2 + " fragmentation spectra comparison")
    
        ax.vlines(dates_1, 0, levels_1, color="tab:red")  # The vertical stems.
        ax.plot(dates_1, np.zeros_like(dates_1),
                color="k", markerfacecolor="w")  # Baseline and markers on it.
    
        # annotate lines
        for d, l, r in zip(dates_1, levels_1, names_1):
            ax.annotate(r, xy=(d, l),
                        xytext=(-3, np.sign(l) * 3), textcoords="offset points",
                        horizontalalignment="right",
                        verticalalignment="bottom" if l > 0 else "top")
    
        ax.vlines(dates_2, 0, -levels_2, color="tab:blue")  # The vertical stems.
        ax.plot(dates_2, np.zeros_like(dates_2),
                color="k", markerfacecolor="w")  # Baseline and markers on it.
    
        # annotate lines
        for d, l, r in zip(dates_2, -levels_2, names_2):
            ax.annotate(r, xy=(d, l),
                        xytext=(-3, np.sign(l) * 3), textcoords="offset points",
                        horizontalalignment="right",
                        verticalalignment="bottom" if l > 0 else "top")
    
    
    
    
        plt.setp(ax.get_xticklabels(), rotation=30, ha="right")
    
        # remove y axis and spines
        ax.yaxis.set_visible(False)
        ax.spines[["left", "top", "right"]].set_visible(False)
    
        ax.margins(y=0.1)
        plt.show()
    
    
    def histo_abs_error(dataframe, display=False, save=False, path=None):
        points = dataframe['abs_error']
    
        ## combine these different collections into a list
        data_to_plot = [points]
    
    
        # Create a figure instance
        fig, ax = plt.subplots()
    
        # Create the boxplot
        ax.set_xlabel('abs error')
        ax.violinplot(data_to_plot, vert=False, side='high', showmedians=True, quantiles=[0.95])
        ax.set_xlim(0,175)
        if display :
            plt.show()
    
        if save :
            plt.savefig(path)
    
    
    def random_color_deterministic(df, column):
    
        def rd10(str):
            color = list(mcolors.CSS4_COLORS)
            random.seed(str)
            return color[random.randint(0,147)]
    
        df['color']=df[column].map(rd10)
    
    def scatter_rt(dataframe, display=False, save=False, path=None, color = False, col = 'seq'):
        fig, ax = plt.subplots()
        if color :
            random_color_deterministic(dataframe, col)
            ax.scatter(dataframe['true rt'], dataframe['rt pred'], s=.1, color = dataframe['color'])
        else :
            ax.scatter(dataframe['true rt'], dataframe['rt pred'], s=.1)
        ax.set_xlabel('true RT')
        ax.set_ylabel('pred RT')
        x = np.array([min(dataframe['true rt']), max(dataframe['true rt'])])
        linreg = sp.stats.linregress(dataframe['true rt'], dataframe['rt pred'])
        ax.annotate("r-squared = {:.3f}".format(r2_score(dataframe['true rt'], dataframe['rt pred'])), (0, 1))
        plt.plot(x, linreg.intercept + linreg.slope * x, 'r')
        if display :
            plt.show()
    
        if save :
            plt.savefig(path)
    
    
    
    
    def histo_abs_error_by_length(dataframe, display=False, save=False, path=None):
        data_to_plot =[]
        max_length = max(dataframe['length'])
        min_length = min(dataframe['length'])
        for l in range(min_length, max_length):
            data_to_plot.append(dataframe['abs_error'].where(dataframe['length']==l))
    
        # data_to_plot.append()
    
    
        fig, ax = plt.subplots()
    
        # Create the boxplot
        bp = ax.violinplot(data_to_plot, vert=True, side='low')
        if display:
            plt.show()
    
        if save:
            plt.savefig(path)
    
    def running_mean(x, N):
        cumsum = np.cumsum(np.insert(x, 0, 0))
        return (cumsum[N:] - cumsum[:-N]) / float(N)
    
    def histo_length_by_error(dataframe, bins, display=False, save=False, path=None):
        data_to_plot = []
        quanti = []
        max_error = max(dataframe['abs_error'])
        inter = np.linspace(0, max_error, num=bins+1)
        inter_m = running_mean(inter, 2)
    
        inter_labels = list(map(lambda x : round(x,2),inter_m))
        inter_labels.insert(0,0)
        for i in range(bins):
            a = dataframe.loc[(inter[i] < dataframe['abs_error']) & (dataframe['abs_error'] < inter[i+1])]['length']
            if len(a)>0:
                data_to_plot.append(a)
                quanti.append(0.95)
            else :
                data_to_plot.append([0])
                quanti.append(0.95)
    
    
        fig, ax = plt.subplots()
    
        # Create the boxplot
        ax.violinplot(data_to_plot, vert=True, side='high', showmedians=True)
        ax.set_ylabel('length')
        ax.set_xticks(range(len(inter)),inter_labels)
        if display:
            plt.show()
    
        if save:
            plt.savefig(path)
    
    def compare_error(df1, df2, display=False, save=False, path=None):
        size = len(df2)
        ind = np.random.choice(range(size), size=10, replace=False)
        seq1 = df1['seq'][ind]
        seq2 = df2['seq'][ind]
        data_1 = df1['abs_error'][ind]
        data_2 = df2['abs_error'][ind]
    
        fig, ax = plt.subplots(figsize=(2, 1))
        ax[0, 0].bar(seq1, data_1, width=0.8)
        ax[1, 0].bar(seq2, data_2, width=0.8)
    
        if display:
            plt.show()
    
        if save:
            plt.savefig(path)
    
    
    def add_length(dataframe):
        def fonc(a):
            a = a.replace('[', '')
            a = a.replace(']', '')
            a = a.split(',')
            a = list(map(int, a))
            return np.count_nonzero(np.array(a))
        dataframe['length']=dataframe['seq'].map(fonc)
    
    
    # df = pd.read_csv('output/out_common_ISA_ISA_eval_2.csv')
    # add_length(df)
    # df['abs_error'] =  np.abs(df['rt pred']-df['true rt'])
    # histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_ISA_eval.png')
    # scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_ISA_eval.png', color=True)
    # histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_ISA_eval.png')
    #
    # df = pd.read_csv('output/out_common_prosit_prosit_eval.csv')
    # add_length(df)
    # df['abs_error'] =  np.abs(df['rt pred']-df['true rt'])
    # histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_prosit_prosit_eval.png')
    # scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_prosit_prosit_eval.png', color=True)
    # histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_prosit_prosit_eval.png')
    #
    # df = pd.read_csv('output/out_common_transfereval.csv')
    # add_length(df)
    # df['abs_error'] =  np.abs(df['rt pred']-df['true rt'])
    # histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_prosit_ISA_eval.png')
    # scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_prosit_ISA_eval.png', color=True)
    # histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_prosit_ISA_eval.png')
    
    # df = pd.read_csv('output/out_common_ISA_prosit_eval.csv')
    # add_length(df)
    # df['abs_error'] =  np.abs(df['rt pred']-df['true rt'])
    # histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_prosit_eval.png')
    # scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_prosit_eval.png', color=True, col = 'seq')
    # histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_prosit_eval.png')
    #