Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LC-MS-RT-prediction
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Léo Schneider
LC-MS-RT-prediction
Commits
7f5c53ca
Commit
7f5c53ca
authored
6 months ago
by
Schneider Leo
Browse files
Options
Downloads
Patches
Plain Diff
selection colomn invariant prosit data
parent
dc85d9ea
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
alignement.py
+6
-15
6 additions, 15 deletions
alignement.py
data_viz.py
+41
-9
41 additions, 9 deletions
data_viz.py
with
47 additions
and
24 deletions
alignement.py
+
6
−
15
View file @
7f5c53ca
import
numpy
as
np
import
pandas
as
pd
from
loess.loess_1d
import
loess_1d
import
scipy
as
sp
from
sklearn.metrics
import
r2_score
from
sympy.abc
import
alpha
import
dataloader
...
...
@@ -79,12 +81,8 @@ def filter_cysteine(df, col):
def
compare_include_df
(
df
,
sub_df
,
save
=
True
,
path
=
'
temp.png
'
):
df_value_list
=
[]
df_sub_value_list
=
[]
i
=
0
for
r
in
sub_df
.
iterrows
()
:
print
(
i
)
i
+=
1
try
:
df_value_list
.
append
(
df
[
df
[
'
Sequence
'
]
==
r
[
1
][
'
Sequence
'
]][
'
Retention time
'
].
reset_index
(
drop
=
True
)[
0
])
df_sub_value_list
.
append
(
r
[
1
][
'
Retention time
'
])
except
:
...
...
@@ -92,6 +90,10 @@ def compare_include_df(df, sub_df, save = True, path = 'temp.png'):
fig
,
ax
=
plt
.
subplots
()
ax
.
scatter
(
df_sub_value_list
,
df_value_list
)
x
=
np
.
array
([
min
(
df_value_list
),
max
(
df_value_list
)])
linreg
=
sp
.
stats
.
linregress
(
df_value_list
,
df_sub_value_list
)
ax
.
annotate
(
"
r-squared = {:.3f}
"
.
format
(
r2_score
(
df_value_list
,
df_sub_value_list
)),
(
0
,
1
))
plt
.
plot
(
x
,
linreg
.
intercept
+
linreg
.
slope
*
x
,
'
r
'
)
if
save
:
plt
.
savefig
(
path
)
...
...
@@ -194,14 +196,3 @@ df_ISA = pd.read_pickle('database/data_ISA_dual_align.pkl')
df_diann_aligned
=
align
(
df_diann
,
df_ori
)
df_value_list
,
df_sub_value_list
=
compare_include_df
(
df_diann_aligned
,
df_ISA
,
True
)
import
scipy
as
sp
from
sklearn.metrics
import
r2_score
fig
,
ax
=
plt
.
subplots
()
ax
.
scatter
(
df_sub_value_list
,
df_value_list
,
s
=
0.1
,
alpha
=
0.1
)
x
=
np
.
array
([
min
(
df_value_list
),
max
(
df_value_list
)])
linreg
=
sp
.
stats
.
linregress
(
df_value_list
,
df_sub_value_list
)
ax
.
annotate
(
"
r-squared = {:.3f}
"
.
format
(
r2_score
(
df_value_list
,
df_sub_value_list
)),
(
0
,
1
))
plt
.
plot
(
x
,
linreg
.
intercept
+
linreg
.
slope
*
x
,
'
r
'
)
plt
.
savefig
(
'
scatter_DIANN-ISA_aligned_on_prosit.png
'
)
plt
.
clf
()
This diff is collapsed.
Click to expand it.
data_viz.py
+
41
−
9
View file @
7f5c53ca
...
...
@@ -226,8 +226,8 @@ def histo_length_by_error(dataframe, bins, display=False, save=False, path=None)
plt
.
savefig
(
path
)
def
compare_error
(
df1
,
df2
,
display
=
False
,
save
=
False
,
path
=
None
):
df1
[
'
abs err 1
'
]
=
abs
(
df1
[
'
rt pred
'
]
-
df1
[
'
true rt
'
]
)
df2
[
'
abs err 2
'
]
=
abs
(
df2
[
'
rt pred
'
]
-
df2
[
'
true rt
'
]
)
df1
[
'
abs err 1
'
]
=
df1
[
'
rt pred
'
]
-
df1
[
'
true rt
'
]
df2
[
'
abs err 2
'
]
=
df2
[
'
rt pred
'
]
-
df2
[
'
true rt
'
]
df_group_1
=
df1
.
groupby
([
'
seq
'
])[
'
abs err 1
'
].
mean
().
to_frame
().
reset_index
()
df_group_2
=
df2
.
groupby
([
'
seq
'
])[
'
abs err 2
'
].
mean
().
to_frame
().
reset_index
()
df
=
pd
.
concat
([
df_group_1
,
df_group_2
],
axis
=
1
)
...
...
@@ -244,6 +244,28 @@ def compare_error(df1, df2, display=False, save=False, path=None):
if
save
:
plt
.
savefig
(
path
)
def
select_best_data
(
df1
,
df2
,
threshold
):
df1
[
'
abs err 1
'
]
=
abs
(
df1
[
'
rt pred
'
]
-
df1
[
'
true rt
'
])
df2
[
'
abs err 2
'
]
=
abs
(
df2
[
'
rt pred
'
]
-
df2
[
'
true rt
'
])
df_group_1
=
df1
.
groupby
([
'
seq
'
])[
'
abs err 1
'
].
mean
().
to_frame
().
reset_index
()
df_group_2
=
df2
.
groupby
([
'
seq
'
])[
'
abs err 2
'
].
mean
().
to_frame
().
reset_index
()
df
=
pd
.
concat
([
df_group_1
,
df_group_2
],
axis
=
1
)
df
[
'
mean
'
]
=
(
df
[
'
abs err 1
'
]
+
df
[
'
abs err 2
'
])
/
2
df_res
=
df
[
df
[
'
mean
'
]
<
threshold
]
print
(
df_res
.
size
)
df_res
=
df_res
[
'
seq
'
]
df_res
.
columns
=
[
'
seq
'
,
'
temp
'
]
df_res
=
df_res
[
'
seq
'
]
good_seq
=
[]
good_rt
=
[]
for
r
in
df1
.
iterrows
()
:
if
r
[
1
][
'
seq
'
]
in
df_res
.
values
:
good_rt
.
append
(
r
[
1
][
'
true rt
'
])
good_seq
.
append
(
r
[
1
][
'
seq
'
])
return
pd
.
DataFrame
({
'
Sequence
'
:
good_seq
,
'
Retention time
'
:
good_rt
})
def
add_length
(
dataframe
):
def
fonc
(
a
):
...
...
@@ -269,12 +291,12 @@ def add_length(dataframe):
# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_prosit_prosit_eval.png', color=True)
# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_prosit_prosit_eval.png')
#
df
=
pd
.
read_csv
(
'
output/out_common_prosit_ISA_eval_3.csv
'
)
add_length
(
df
)
df
[
'
abs_error
'
]
=
np
.
abs
(
df
[
'
rt pred
'
]
-
df
[
'
true rt
'
])
histo_abs_error
(
df
,
display
=
False
,
save
=
True
,
path
=
'
fig/custom model res/histo_prosit_ISA_eval_3.png
'
)
scatter_rt
(
df
,
display
=
False
,
save
=
True
,
path
=
'
fig/custom model res/RT_pred_prosit_ISA_eval_3.png
'
,
color
=
True
)
histo_length_by_error
(
df
,
bins
=
10
,
display
=
False
,
save
=
True
,
path
=
'
fig/custom model res/histo_length_prosit_ISA_eval_3.png
'
)
#
df = pd.read_csv('output/out_common_prosit_ISA_eval_3.csv')
#
add_length(df)
#
df['abs_error'] = np.abs(df['rt pred']-df['true rt'])
#
histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_prosit_ISA_eval_3.png')
#
scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_prosit_ISA_eval_3.png', color=True)
#
histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_prosit_ISA_eval_3.png')
# df = pd.read_csv('output/out_common_ISA_prosit_eval.csv')
# add_length(df)
...
...
@@ -282,5 +304,15 @@ histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom mo
# histo_abs_error(df, display=False, save=True, path='fig/custom model res/histo_ISA_prosit_eval.png')
# scatter_rt(df, display=False, save=True, path='fig/custom model res/RT_pred_ISA_prosit_eval.png', color=True, col = 'seq')
# histo_length_by_error(df, bins=10, display=False, save=True, path='fig/custom model res/histo_length_ISA_prosit_eval.png')
#
## Compare error variation between run
## Prosit column changes affect some peptides more than others (but consistently)
df_1
=
pd
.
read_csv
(
'
output/out_common_ISA_prosit_eval.csv
'
)
df_2
=
pd
.
read_csv
(
'
output/out_common_ISA_prosit_eval_2.csv
'
)
df
=
select_best_data
(
df_1
,
df_2
,
3
)
df
.
to_pickle
(
'
database/data_prosit_threshold_3.pkl
'
)
# compare_error(df_1,df_2,save=True,path='fig/custom model res/ISA_prosit_error_variation.png')
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment