Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LC-MS-RT-prediction
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Léo Schneider
LC-MS-RT-prediction
Commits
c9c09157
Commit
c9c09157
authored
1 year ago
by
Schneider Leo
Browse files
Options
Downloads
Patches
Plain Diff
add test
parent
40e396cd
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
.gitignore
+0
-2
0 additions, 2 deletions
.gitignore
test.py
+132
-0
132 additions, 0 deletions
test.py
with
132 additions
and
2 deletions
.gitignore
+
0
−
2
View file @
c9c09157
...
...
@@ -2,7 +2,5 @@
/fig/
/venv/
/dataset/
/test.py
/database/
/wandb_run/
This diff is collapsed.
Click to expand it.
test.py
0 → 100644
+
132
−
0
View file @
c9c09157
import
os
import
wandb
as
wdb
import
torch.nn
as
nn
import
torch.optim
as
optim
import
torch
from
dataloader
import
load_data
,
load_split_intensity
,
Intentsity_Dataset
,
load_intensity_from_files
from
model
import
RT_pred_model
,
Intensity_pred_model_multi_head
,
RT_pred_model_self_attention
from
config
import
load_args
def
train
(
model
,
data_train
,
epoch
,
optimizer
,
criterion
,
cuda
=
False
):
losses
=
0.
distance
=
0.
for
data1
,
data2
,
data3
,
target
in
data_train
:
if
torch
.
cuda
.
is_available
():
data1
,
data2
,
data3
,
target
=
data1
.
cuda
(),
data2
.
cuda
(),
data3
.
cuda
(),
target
.
cuda
()
pred_rt
=
model
.
forward
(
data1
,
data2
,
data3
)
target
.
float
()
loss
=
criterion
(
pred_rt
,
target
)
dist
=
torch
.
mean
(
torch
.
abs
(
pred_rt
-
target
))
distance
+=
dist
.
item
()
optimizer
.
zero_grad
()
loss
.
backward
()
optimizer
.
step
()
losses
+=
loss
.
item
()
# wdb.log({"train loss": losses / len(data_train), "train mean distance": distance / len(data_train)})
print
(
'
epoch :
'
,
epoch
,
'
,train losses :
'
,
losses
/
len
(
data_train
),
"
,mean distance :
"
,
distance
/
len
(
data_train
))
def
eval
(
model
,
data_test
,
epoch
,
criterion
=
nn
.
MSELoss
(
reduction
=
'
mean
'
),
cuda
=
False
):
losses
=
0.
distance
=
0.
for
data
,
target
in
data_test
:
if
torch
.
cuda
.
is_available
():
data
,
target
=
data
.
cuda
(),
target
.
cuda
()
pred_rt
=
model
(
data
)
loss
=
criterion
(
pred_rt
,
target
)
losses
+=
loss
.
item
()
dist
=
torch
.
mean
(
torch
.
abs
(
pred_rt
-
target
))
distance
+=
dist
.
item
()
# wdb.log({"eval loss": losses / len(data_test), "eval mean distance": distance / len(data_test)})
print
(
'
epoch :
'
,
epoch
,
'
,eval losses :
'
,
losses
/
len
(
data_test
),
"
,eval mean distance: :
"
,
distance
/
len
(
data_test
))
def
save
(
model
,
optimizer
,
epoch
,
checkpoint_name
):
print
(
'
\n
Model Saving...
'
)
model_state_dict
=
model
.
state_dict
()
os
.
makedirs
(
'
checkpoints
'
,
exist_ok
=
True
)
torch
.
save
({
'
model_state_dict
'
:
model_state_dict
,
'
global_epoch
'
:
epoch
,
'
optimizer_state_dict
'
:
optimizer
.
state_dict
(),
},
os
.
path
.
join
(
'
checkpoints
'
,
checkpoint_name
))
def
run
(
epochs
,
eval_inter
,
save_inter
,
model
,
data_train
,
data_test
,
optimizer
,
criterion
=
nn
.
MSELoss
(
reduction
=
'
mean
'
),
cuda
=
False
):
for
e
in
range
(
1
,
epochs
+
1
):
train
(
model
,
data_train
,
e
,
optimizer
,
criterion
,
cuda
=
cuda
)
if
e
%
eval_inter
==
0
:
eval
(
model
,
data_test
,
e
,
cuda
=
cuda
)
if
e
%
save_inter
==
0
:
save
(
model
,
optimizer
,
epochs
,
'
model_self_attention_
'
+
str
(
e
)
+
'
.pt
'
)
def
main
(
args
):
os
.
environ
[
"
WANDB_API_KEY
"
]
=
'
b4a27ac6b6145e1a5d0ee7f9e2e8c20bd101dccd
'
os
.
environ
[
"
WANDB_MODE
"
]
=
"
offline
"
config
=
{
"
model
"
:
"
RT prediction GRU/selfAtt+ GRU
"
,
"
learning_rate
"
:
args
.
lr
,
"
batch_size
"
:
args
.
batch_size
,
}
# wdb.init(project="RT prediction", dir='wandb_run')
print
(
'
Cuda :
'
,
torch
.
cuda
.
is_available
())
data_train
,
data_test
=
load_data
(
args
.
batch_size
,
args
.
n_train
,
args
.
n_test
,
data_source
=
'
database/data.csv
'
)
print
(
'
\n
Data loaded
'
)
model
=
RT_pred_model_self_attention
()
if
torch
.
cuda
.
is_available
():
model
=
model
.
cuda
()
optimizer
=
optim
.
Adam
(
model
.
parameters
(),
lr
=
args
.
lr
)
print
(
'
\n
Model initialised
'
)
run
(
args
.
epochs
,
args
.
eval_inter
,
args
.
save_inter
,
model
,
data_train
,
data_test
,
optimizer
=
optimizer
,
cuda
=
True
)
# wdb.finish()
def
main2
(
args
):
print
(
torch
.
cuda
.
is_available
())
# sources_train = ('data/intensity/sequence_train.npy',
# 'data/intensity/intensity_train.npy',
# 'data/intensity/collision_energy_train.npy',
# 'data/intensity/precursor_charge_train.npy')
#
# sources_test = ('data/intensity/sequence_test.npy',
# 'data/intensity/intensity_test.npy',
# 'data/intensity/collision_energy_test.npy',
# 'data/intensity/precursor_charge_test.npy')
#
# data_train = load_intensity_from_files(sources_train[0], sources_train[1], sources_train[2], sources_train[3])
# data_test = load_intensity_from_files(sources_test[0], sources_test[1], sources_test[2], sources_test[3])
sources
=
(
'
data/intensity/sequence_header.npy
'
,
'
data/intensity/intensity_header.npy
'
,
'
data/intensity/collision_energy_header.npy
'
,
'
data/intensity/precursor_charge_header.npy
'
)
data_train
,
data_test
,
data_validation
=
load_split_intensity
(
sources
,
(
0.5
,
0.25
,
0.25
))
train
=
Intentsity_Dataset
(
data_train
)
test
=
Intentsity_Dataset
(
data_test
)
print
(
'
\n
Data loaded
'
)
model
=
Intensity_pred_model_multi_head
()
if
torch
.
cuda
.
is_available
():
model
=
model
.
cuda
()
optimizer
=
optim
.
Adam
(
model
.
parameters
(),
lr
=
0.001
)
print
(
'
\n
Model initialised
'
)
run
(
args
.
epochs
,
args
.
eval_inter
,
args
.
save_inter
,
model
,
train
,
test
,
optimizer
=
optimizer
,
cuda
=
True
)
if
__name__
==
"
__main__
"
:
args
=
load_args
()
print
(
args
)
main2
(
args
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment