-
Schneider Leo authored6a63684c
main.py 6.40 KiB
import os
import pandas as pd
import torch
import torch.optim as optim
import wandb as wdb
from data.dataset import load_data
from config import load_args
from model.loss import distance
from model.model import ModelTransformer
def train(model, data_train, epoch, optimizer, criterion_rt, metric_rt, wandb=None):
losses_rt = 0.
dist_rt_acc = 0.
model.train()
for param in model.parameters():
param.requires_grad = True
for seq, rt in data_train:
rt = rt.float()
if torch.cuda.is_available():
seq, rt = seq.cuda(), rt.cuda()
pred_rt = model.forward(seq)
loss_rt = criterion_rt(rt, pred_rt)
loss = loss_rt
dist_rt = metric_rt(rt, pred_rt)
dist_rt_acc += dist_rt.item()
losses_rt += loss_rt.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
if wandb is not None:
wdb.log({"train rt loss": losses_rt / len(data_train),
"train rt mean metric": dist_rt_acc / len(data_train),
'train epoch': epoch})
print('epoch : ', epoch, 'train rt loss', losses_rt / len(data_train), "train rt mean metric : ",
dist_rt_acc / len(data_train))
def eval(model, data_val, epoch, criterion_rt, metric_rt, wandb=None):
model.eval()
losses_rt = 0.
dist_rt_acc = 0.
for param in model.parameters():
param.requires_grad = False
for seq, rt in data_val:
rt = rt.float()
if torch.cuda.is_available():
seq, rt = seq.cuda(), rt.cuda()
pred_rt = model.forward(seq)
loss_rt = criterion_rt(rt, pred_rt)
losses_rt += loss_rt.item()
dist_rt = metric_rt(rt, pred_rt)
dist_rt_acc += dist_rt.item()
if wandb is not None:
wdb.log({"val rt loss": losses_rt / len(data_val),
"val rt mean metric": dist_rt_acc / len(data_val),
'val epoch': epoch})
print('epoch : ', epoch, 'val rt loss', losses_rt / len(data_val),
"val rt mean metric : ",
dist_rt_acc / len(data_val))
return losses_rt
def run(epochs, eval_inter, save_inter, model, data_train, data_val, data_test, optimizer, criterion_rt,
metric_rt, wandb=None, output='output/out.csv'):
mem = 1000000.
for e in range(1, epochs + 1):
train(model, data_train, e, optimizer, criterion_rt, metric_rt, wandb=wandb)
if e % eval_inter == 0:
losses_rt = eval(model, data_val, e, criterion_rt, metric_rt, wandb=wandb)
if losses_rt < mem :
mem = losses_rt
torch.save(model.state_dict(), output.strip('.csv')+'.pt')
print('model saved')
model.load_state_dict(torch.load(output.strip('.csv')+'.pt', weights_only=True))
save_pred(model, data_test, output, criterion_rt, metric_rt, wandb)
def main(args):
if args.wandb is not None:
os.environ["WANDB_API_KEY"] = 'b4a27ac6b6145e1a5d0ee7f9e2e8c20bd101dccd'
os.environ["WANDB_MODE"] = "offline"
os.environ["WANDB_DIR"] = os.path.abspath("./wandb_run")
wdb.init(project="Common prediction", dir='./wandb_run', name=args.wandb)
print(args)
print('Cuda : ', torch.cuda.is_available())
data_train = load_data(data_source=args.dataset_train, batch_size=args.batch_size, length=30, mode=args.split_train, seq_col=args.seq_train)
data_test = load_data(data_source=args.dataset_test , batch_size=args.batch_size, length=30, mode=args.split_test, seq_col=args.seq_test)
data_val = load_data(data_source=args.dataset_val, batch_size=args.batch_size, length=30, mode=args.split_val, seq_col=args.seq_val)
print('\nData loaded')
model = ModelTransformer(encoder_ff=args.encoder_ff, decoder_rt_ff=args.decoder_rt_ff,
n_head=args.n_head, encoder_num_layer=args.encoder_num_layer,
decoder_rt_num_layer=args.decoder_rt_num_layer, drop_rate=args.drop_rate,
embedding_dim=args.embedding_dim, acti=args.activation, norm=args.norm_first,
seq_length=30)
if args.model_weigh is not None :
model.load_state_dict(torch.load(args.model_weigh, weights_only=True))
if torch.cuda.is_available():
model = model.cuda()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
print('\nModel initialised')
run(epochs=args.epochs, eval_inter=args.eval_inter, save_inter=args.save_inter, model=model, data_train=data_train,
data_val=data_val, data_test=data_test, optimizer=optimizer, criterion_rt=torch.nn.MSELoss(), metric_rt=distance,
wandb=args.wandb, output=args.output)
if args.wandb is not None:
wdb.finish()
def save(model, checkpoint_name):
print('\nModel Saving...')
os.makedirs('checkpoints', exist_ok=True)
torch.save(model, os.path.join('checkpoints', checkpoint_name))
def load(path):
model = torch.load(os.path.join('checkpoints', path))
return model
def get_n_params(model):
pp = 0
for n, p in list(model.named_parameters()):
nn = 1
for s in list(p.size()):
nn = nn * s
print(n, nn)
pp += nn
return pp
def save_pred(model, data_val, output_path, criterion_rt, metric_rt, wandb=None):
data_frame = pd.DataFrame()
losses_rt = 0.
dist_rt_acc = 0.
model.eval()
for param in model.parameters():
param.requires_grad = False
pred_rt, seqs, true_rt = [], [], []
for seq, rt in data_val:
rt = rt.float()
if torch.cuda.is_available():
seq, rt = seq.cuda(), rt.cuda()
pr_rt = model.forward(seq)
pred_rt.extend(pr_rt.data.cpu().tolist())
seqs.extend(seq.data.cpu().tolist())
true_rt.extend(rt.data.cpu().tolist())
loss_rt = criterion_rt(rt, pr_rt)
losses_rt += loss_rt.item()
dist_rt = metric_rt(rt, pr_rt)
dist_rt_acc += dist_rt.item()
if wandb is not None:
wdb.log({"test rt loss": losses_rt / len(data_val),
"test rt mean metric": dist_rt_acc / len(data_val)})
print('test rt loss', losses_rt / len(data_val),
"test rt mean metric : ",
dist_rt_acc / len(data_val))
data_frame['rt pred'] = pred_rt
data_frame['seq'] = seqs
data_frame['true rt'] = true_rt
data_frame.to_csv(output_path)
if __name__ == "__main__":
args = load_args()
main(args)
#output/out_coli_augmented_04_coli_8.pt