Skip to content
Snippets Groups Projects
Commit 1f71fb62 authored by Schneider Leo's avatar Schneider Leo
Browse files

df oktoberfest

parent a2ea63ac
No related branches found
No related tags found
No related merge requests found
......@@ -40,39 +40,42 @@ def numerical_to_alphabetical_str(s):
return seq
if __name__ == '__main__':
seq=[]
file = open("spectral_lib/predicted_library.msp", "r")
content=file.readlines()
file.close()
remove = False
index_to_remove=[]
updated_content=[]
ind=0
predicted_lib=pd.read_csv('../output/out_lib_oktoberfest.csv')
pred_rt=predicted_lib['rt pred']
for i in range(len(content)) :
if remove:
if 'Name:' in content[i]:
remove = False
else :
pass
if 'Name:'in content[i]:
s=content[i].split(': ')[1].split('/')[0]
if 'C' in s or len(s)>30:
remove=True
else :
seq.append(s)
df = pd.DataFrame(seq,columns=['sequence'])
df = df.drop_duplicates()
df['irt_scaled']=0
df['state'] = 'holdout'
df.to_csv('spectral_lib/df_predicted_library_oktoberfest.csv',index=False)
#extract seq from .msp
# seq=[]
# file = open("spectral_lib/predicted_library.msp", "r")
# content=file.readlines()
# file.close()
# remove = False
# predicted_lib=pd.read_csv('../output/out_lib_oktoberfest.csv')
# pred_rt=predicted_lib['rt pred']
#
# for i in range(len(content)) :
# if remove:
# if 'Name:' in content[i]:
# remove = False
# else :
# pass
#
# if 'Name:'in content[i]:
# s=content[i].split(': ')[1].split('/')[0]
# if 'C' in s or len(s)>30:
# remove=True
# else :
# seq.append(s)
#
# df = pd.DataFrame(seq,columns=['sequence'])
# df = df.drop_duplicates()
# df['irt_scaled']=0
# df['state'] = 'holdout'
# df.to_csv('spectral_lib/df_predicted_library_oktoberfest.csv',index=False)
#
#
# #write new .msp with new RT
#
updated_content=[]
ind=0
#
df= pd.read_csv('spectral_lib/df_predicted_library_oktoberfest.csv')
predicted_lib=pd.read_csv('../output/out_lib_oktoberfest.csv')
predicted_lib['seq'] = predicted_lib['seq'].map(numerical_to_alphabetical_str)
......@@ -82,6 +85,42 @@ if __name__ == '__main__':
pred_rt=predicted_lib['rt pred']
df_joined = pd.merge(df,predicted_lib[['rt pred','sequence']],on='sequence',how='left')
#
file = open("spectral_lib/predicted_library.msp", "r")
content=file.readlines()
file.close()
remove = False
with open('spectral_lib/new_lib.msp', 'w') as f:
i=0
j=0
k=-1
for i in range(len(content)) :
k-=1
if remove:
if 'Name:' in content[i]:
remove = False
else :
pass
elif 'Name:'in content[i]:
s=content[i].split(': ')[1].split('/')[0]
k=2
if 'C' in s or len(s)>30:
remove=True
else :
f.write(f"{content[i]}")
i += 1
elif k==0:
rt = content[i].split('iRT=')[1]
f.write(f"{content[i].replace(rt, str(df_joined['rt pred'][j]))}\n")
i+=1
j+=1
else:
f.write(f"{content[i]}")
i+=1
#1787661 avec C , 15104040 sans
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment