Skip to content
Snippets Groups Projects
Commit 2a3894ec authored by Schneider Leo's avatar Schneider Leo
Browse files

dataset

parent d2bcec95
No related branches found
No related tags found
No related merge requests found
...@@ -100,15 +100,18 @@ def select_best_data(df_list,threshold): ...@@ -100,15 +100,18 @@ def select_best_data(df_list,threshold):
num = len(df_list) num = len(df_list)
l=[] l=[]
i=0 i=0
print('Error calc')
for df in df_list : for df in df_list :
df['abs err {}'.format(i)] = abs(df['rt pred'] - df['true rt']) df['abs err {}'.format(i)] = abs(df['rt pred'] - df['true rt'])
df_group = df.groupby(['seq'])['abs err {}'.format(i)].mean().to_frame().reset_index() df_group = df.groupby(['seq'])['abs err {}'.format(i)].mean().to_frame().reset_index()
l.append(df_group) l.append(df_group)
i += 1 i += 1
print(str(i)+'/'+str(num))
df = pd.concat(l, axis=1) df = pd.concat(l, axis=1)
df['mean'] = df['abs err 0'] df['mean'] = df['abs err 0']
for i in range(1,num): for i in range(1,num):
df['mean']=df['mean']+df['abs err {}'.format(i)] df['mean']=df['mean']+df['abs err {}'.format(i)]
print('filtering')
df['mean'] = df['mean']/num df['mean'] = df['mean']/num
df_res = df[df['mean']<threshold] df_res = df[df['mean']<threshold]
c_name=['seq{}'.format(i) for i in range(num)]+['mean'] c_name=['seq{}'.format(i) for i in range(num)]+['mean']
...@@ -117,10 +120,14 @@ def select_best_data(df_list,threshold): ...@@ -117,10 +120,14 @@ def select_best_data(df_list,threshold):
df_res = df_res[['seq0']] df_res = df_res[['seq0']]
good_seq=[] good_seq=[]
good_rt=[] good_rt=[]
print('selecting')
i=0
for r in df_list[0].iterrows() : for r in df_list[0].iterrows() :
print(str(i) + '/' + str(len(df_list[0])))
if r[1]['seq'] in df_res.values : if r[1]['seq'] in df_res.values :
good_rt.append(r[1]['true rt']) good_rt.append(r[1]['true rt'])
good_seq.append(r[1]['seq']) good_seq.append(r[1]['seq'])
print('merging')
return pd.DataFrame({'sequence' : good_seq, 'irt_scaled': good_rt}) return pd.DataFrame({'sequence' : good_seq, 'irt_scaled': good_rt})
...@@ -156,16 +163,16 @@ def numerical_to_alphabetical_str(s): ...@@ -156,16 +163,16 @@ def numerical_to_alphabetical_str(s):
if __name__ == '__main__': if __name__ == '__main__':
# main() # main()
df_base = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/e_coli/data_aligned_train_coli.csv') df_base = pd.read_csv('./data_PXD006109/e_coli/data_aligned_train_coli.csv')
df_base = df_base[['sequence', 'irt_scaled','state']] df_base = df_base[['sequence', 'irt_scaled','state']]
t = [0.05,0.1,0.2,0.3,0.4,0.5,0.7,1,10] t = [0.05,0.1,0.2,0.3,0.4,0.5,0.7,1,10]
#reste 07 1 et all #reste 07 1 et all
name = ['005','01','02','03','04','05','07','1','all'] name = ['005','01','02','03','04','05','07','1','all']
df_0 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_0.csv') df_0 = pd.read_csv('../output/out_coli_aligned_train_0.csv')
df_1 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_1.csv') df_1 = pd.read_csv('../output/out_coli_aligned_train_1.csv')
df_2 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_2.csv') df_2 = pd.read_csv('../output/out_coli_aligned_train_2.csv')
df_3 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_3.csv') df_3 = pd.read_csv('../output/out_coli_aligned_train_3.csv')
df_4 = pd.read_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/output/out_coli_aligned_train_4.csv') df_4 = pd.read_csv('../output/out_coli_aligned_train_4.csv')
list_df = [df_0, df_1, df_2, df_3, df_4] list_df = [df_0, df_1, df_2, df_3, df_4]
for i in range(len(name)): for i in range(len(name)):
...@@ -173,12 +180,12 @@ if __name__ == '__main__': ...@@ -173,12 +180,12 @@ if __name__ == '__main__':
print('thresold {} en cours'.format(name[i])) print('thresold {} en cours'.format(name[i]))
# #
df = select_best_data(list_df, t[i]) df = select_best_data(list_df, t[i])
df.to_pickle('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/e_coli/data_ISA_additionnal_{}.pkl'.format(name[i])) df.to_pickle('./data_PXD006109/e_coli/data_ISA_additionnal_{}.pkl'.format(name[i]))
df = pd.read_pickle('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/e_coli/data_ISA_additionnal_{}.pkl'.format(name[i])) df = pd.read_pickle('./data_PXD006109/e_coli/data_ISA_additionnal_{}.pkl'.format(name[i]))
df['state'] = 'train' df['state'] = 'train'
df['sequence'] = df['sequence'].map(numerical_to_alphabetical_str) df['sequence'] = df['sequence'].map(numerical_to_alphabetical_str)
df_augmented_1 = pd.concat([df, df_base], axis=0).reset_index(drop=True) df_augmented_1 = pd.concat([df, df_base], axis=0).reset_index(drop=True)
df_augmented_1.columns = ['sequence', 'irt_scaled','state'] df_augmented_1.columns = ['sequence', 'irt_scaled','state']
df_augmented_1.to_csv('/lustre/fswork/projects/rech/bun/ucg81ws/these/dia-augmentation/data/data_PXD006109/e_coli/plasma_data_augmented_{}.csv'.format(name[i]), index=False) df_augmented_1.to_csv('./data_PXD006109/e_coli/plasma_data_augmented_{}.csv'.format(name[i]), index=False)
print(df_augmented_1.shape) print(df_augmented_1.shape)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment