Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DIA augmentation
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Léo Schneider
DIA augmentation
Commits
60f04719
Commit
60f04719
authored
2 months ago
by
Schneider Leo
Browse files
Options
Downloads
Patches
Plain Diff
fix
parent
10b5e5f1
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
diann_lib_processing.py
+85
-89
85 additions, 89 deletions
diann_lib_processing.py
identification/result_extraction.py
+14
-2
14 additions, 2 deletions
identification/result_extraction.py
with
99 additions
and
91 deletions
diann_lib_processing.py
+
85
−
89
View file @
60f04719
...
...
@@ -5,7 +5,7 @@ import pyarrow.parquet as pq
import
pyarrow
as
pa
import
torch
import
matplotlib.pyplot
as
plt
#
from loess.loess_1d import loess_1d
from
loess.loess_1d
import
loess_1d
from
model.model
import
ModelTransformer
from
config
import
load_args
...
...
@@ -96,98 +96,94 @@ def predict(data_pred, model, output_path):
if
__name__
==
'
__main__
'
:
# df = load_lib('spectral_lib/1-240711_ident_resistance_idbioriv_fluoroquinolones_conta_human_sang.parquet')
# df = extract_sequence(df)
# df.to_csv('spectral_lib/1-240711_ident_resistance_idbioriv_fluoroquinolones_conta_human_sang.csv')
# plt.hist(df['RT'])
# plt.savefig('test.png')
#
# df_2 = pd.read_csv('data_prosit/data.csv')
#
# plt.clf()
# plt.hist(df_2['irt'])
# plt.savefig('test2.png')
#
# df_2 = extract_sequence(df).reset_index(drop=True)
#
# pred = pd.read_csv('../output/out_lib_CITBASE_try_contaminant.csv')
#
# pred['seq']=pred['seq'].map(numerical_to_alphabetical_str)
#
# pred['Modified.Sequence']=pred['seq']
#
# result = pd.merge(df,pred[['Modified.Sequence','rt pred']],on='Modified.Sequence',how='left')
#
#
#
# #alignement
#
# ref = pd.read_csv('data_prosit/data_noc.csv')
# df_ISA = pd.read_csv('data_ISA/data_aligned_isa_noc.csv')
#
# dataset, reference, column_dataset, column_ref, seq_data, seq_ref = df_ISA, ref, 'irt_scaled', 'irt', 'sequence','sequence',
#
# dataset_ref=dataset[dataset['state']=='train']
# dataset_unique = dataset_ref[[seq_data,column_dataset]].groupby(seq_data).mean()
# print('unique',len(dataset_unique))
# reference_unique = reference[[seq_ref,column_ref]].groupby(seq_ref).mean()
# seq_ref = reference_unique.index
# seq_common = dataset_unique.index
# seq_ref = seq_ref.tolist()
# seq_common = seq_common.tolist()
#
# seq_ref = [tuple(l) for l in seq_ref]
# seq_common = [tuple(l) for l in seq_common]
#
# ind_dict_ref = dict((k, i) for i, k in enumerate(seq_ref))
# inter = set(ind_dict_ref).intersection(seq_common)
# print(len(inter))
#
# ind_dict_ref = [ind_dict_ref[x] for x in inter]
#
# indices_common = dict((k, i) for i, k in enumerate(seq_common))
# indices_common = [indices_common[x] for x in inter]
#
#
# rt_ref = reference_unique[column_ref][ind_dict_ref].reset_index()
# rt_data = dataset_unique[column_dataset][indices_common].reset_index()
#
# plt.scatter(rt_data[column_dataset].tolist(),rt_ref[column_ref].tolist(),s=0.1)
# plt.savefig('test.png')
#
# #présence de NAN qui casse le réalignement (solution temporaire : remplacer par 0.
# result['rt pred']=result['rt pred'].fillna(value=0)
# xout, yout, wout = loess_1d(np.array(rt_data[column_dataset].tolist()), np.array(rt_ref[column_ref].tolist()),
# xnew=result['rt pred'],
# degree=1,
# npoints=None, rotate=False, sigy=None)
#
#
# #writing results
#
# result['RT'] = yout
#
# result = result.drop('rt pred', axis=1)
#
# table = pa.Table.from_pandas(result)
#
# pq.write_table(table, 'spectral_lib/first_lib_contaminant_prosit_aligned.parquet')
#
df
=
load_lib
(
'
spectral_lib/1-240711_ident_resistance_idbioriv_fluoroquinolones_conta_human_sang.parquet
'
)
df_2
=
pd
.
read_csv
(
'
data_prosit/data.csv
'
)
args
=
load_args
()
plt
.
clf
()
plt
.
hist
(
df_2
[
'
irt
'
])
plt
.
savefig
(
'
test2.png
'
)
model
=
ModelTransformer
(
encoder_ff
=
args
.
encoder_ff
,
decoder_rt_ff
=
args
.
decoder_rt_ff
,
n_head
=
args
.
n_head
,
encoder_num_layer
=
args
.
encoder_num_layer
,
decoder_rt_num_layer
=
args
.
decoder_rt_num_layer
,
drop_rate
=
args
.
drop_rate
,
embedding_dim
=
args
.
embedding_dim
,
acti
=
args
.
activation
,
norm
=
args
.
norm_first
,
seq_length
=
30
)
df_2
=
extract_sequence
(
df
).
reset_index
(
drop
=
True
)
if
torch
.
cuda
.
is_available
():
model
=
model
.
cuda
()
pred
=
pd
.
read_csv
(
'
../output/out_transfer_prosit_isa_1-240711_ident_resistance_idbioriv_fluoroquinolones_conta_human_sang.csv
'
)
model
.
load_state_dict
(
torch
.
load
(
args
.
model_weigh
,
weights_only
=
True
)
)
pred
[
'
seq
'
]
=
pred
[
'
seq
'
].
map
(
numerical_to_alphabetical_str
)
data_test
=
load_data
(
data_source
=
args
.
dataset_test
,
batch_size
=
args
.
batch_size
,
length
=
30
,
mode
=
args
.
split_test
,
seq_col
=
args
.
seq_test
)
pred
[
'
Modified.Sequence
'
]
=
pred
[
'
seq
'
]
predict
(
data_test
,
model
,
args
.
output
)
result
=
pd
.
merge
(
df
,
pred
[[
'
Modified.Sequence
'
,
'
rt pred
'
]],
on
=
'
Modified.Sequence
'
,
how
=
'
left
'
)
#alignement
ref
=
pd
.
read_csv
(
'
data_prosit/data_noc.csv
'
)
df_ISA
=
pd
.
read_csv
(
'
data_ISA/data_aligned_isa_noc.csv
'
)
dataset
,
reference
,
column_dataset
,
column_ref
,
seq_data
,
seq_ref
=
df_ISA
,
ref
,
'
irt_scaled
'
,
'
irt
'
,
'
sequence
'
,
'
sequence
'
,
dataset_ref
=
dataset
[
dataset
[
'
state
'
]
==
'
train
'
]
dataset_unique
=
dataset_ref
[[
seq_data
,
column_dataset
]].
groupby
(
seq_data
).
mean
()
print
(
'
unique
'
,
len
(
dataset_unique
))
reference_unique
=
reference
[[
seq_ref
,
column_ref
]].
groupby
(
seq_ref
).
mean
()
seq_ref
=
reference_unique
.
index
seq_common
=
dataset_unique
.
index
seq_ref
=
seq_ref
.
tolist
()
seq_common
=
seq_common
.
tolist
()
seq_ref
=
[
tuple
(
l
)
for
l
in
seq_ref
]
seq_common
=
[
tuple
(
l
)
for
l
in
seq_common
]
ind_dict_ref
=
dict
((
k
,
i
)
for
i
,
k
in
enumerate
(
seq_ref
))
inter
=
set
(
ind_dict_ref
).
intersection
(
seq_common
)
print
(
len
(
inter
))
ind_dict_ref
=
[
ind_dict_ref
[
x
]
for
x
in
inter
]
indices_common
=
dict
((
k
,
i
)
for
i
,
k
in
enumerate
(
seq_common
))
indices_common
=
[
indices_common
[
x
]
for
x
in
inter
]
rt_ref
=
reference_unique
[
column_ref
][
ind_dict_ref
].
reset_index
()
rt_data
=
dataset_unique
[
column_dataset
][
indices_common
].
reset_index
()
plt
.
scatter
(
rt_data
[
column_dataset
].
tolist
(),
rt_ref
[
column_ref
].
tolist
(),
s
=
0.1
)
plt
.
savefig
(
'
test.png
'
)
#présence de NAN qui casse le réalignement (solution temporaire : remplacer par 0.
result
[
'
rt pred
'
]
=
result
[
'
rt pred
'
].
fillna
(
value
=
0
)
xout
,
yout
,
wout
=
loess_1d
(
np
.
array
(
rt_data
[
column_dataset
].
tolist
()),
np
.
array
(
rt_ref
[
column_ref
].
tolist
()),
xnew
=
result
[
'
rt pred
'
],
degree
=
1
,
npoints
=
None
,
rotate
=
False
,
sigy
=
None
)
#writing results
result
[
'
RT
'
]
=
yout
result
=
result
.
drop
(
'
rt pred
'
,
axis
=
1
)
table
=
pa
.
Table
.
from_pandas
(
result
)
pq
.
write_table
(
table
,
'
spectral_lib/1-240711_ident_resistance_idbioriv_fluoroquinolones_conta_human_sang_finetune_aligned.parquet
'
)
# args = load_args()
#
# model = ModelTransformer(encoder_ff=args.encoder_ff, decoder_rt_ff=args.decoder_rt_ff,
# n_head=args.n_head, encoder_num_layer=args.encoder_num_layer,
# decoder_rt_num_layer=args.decoder_rt_num_layer, drop_rate=args.drop_rate,
# embedding_dim=args.embedding_dim, acti=args.activation, norm=args.norm_first, seq_length=30)
#
# if torch.cuda.is_available():
# model = model.cuda()
#
# model.load_state_dict(torch.load(args.model_weigh, weights_only=True))
#
# data_test = load_data(data_source=args.dataset_test, batch_size=args.batch_size, length=30, mode=args.split_test,
# seq_col=args.seq_test)
#
# predict(data_test, model, args.output)
This diff is collapsed.
Click to expand it.
identification/result_extraction.py
+
14
−
2
View file @
60f04719
...
...
@@ -41,7 +41,19 @@ def compare_error(path_1,path_2):
plt
.
savefig
(
'
error2.png
'
)
return
error_1
,
error_2
def
compare_with_db
(
path
):
df
=
pd
.
read_csv
(
path
,
sep
=
'
\t
'
,
encoding
=
'
latin-1
'
)
df_ref
=
pd
.
read_excel
(
'
250205_All_Peptides_panel_ID_+_RES.xlsx
'
,
names
=
[
'
peptide
'
,
'
fonction
'
])
df2
=
df
[
df
[
'
Stripped.Sequence
'
].
isin
(
df_ref
[
'
peptide
'
].
to_list
())]
corespondance
=
pd
.
merge
(
df2
,
df_ref
,
left_on
=
'
Stripped.Sequence
'
,
right_on
=
'
peptide
'
,
how
=
"
left
"
)
return
corespondance
if
__name__
==
'
__main__
'
:
# compare_id('CITCRO_ANA_3/report_custom.tsv', 'CITCRO_ANA_3/report_first_lib.tsv', 'CITCRO_ANA_3/report_finetune.tsv','CITCRO_ANA_3')
e1
,
e2
=
compare_error
(
'
CITCRO_ANA_3/report_custom.tsv
'
,
'
CITCRO_ANA_3/report_first_lib.tsv
'
)
\ No newline at end of file
# compare_id('CITAMA_ANA_5/julie_custom_nolib.tsv', 'CITAMA_ANA_5/julie_base_nolib.tsv', 'CITAMA_ANA_5/julie_finetune_nolib.tsv','CITAMA_ANA_5_julie_no_lib')
# e1,e2 = compare_error('CITAMA_ANA_5/report_custom.tsv', 'CITCRO_ANA_3/report_first_lib.tsv')
cor_base
=
compare_with_db
(
'
CITAMA_ANA_5/julie_base_nolib.tsv
'
)
cor_custom
=
compare_with_db
(
'
CITAMA_ANA_5/julie_custom_nolib.tsv
'
)
cor_finetune
=
compare_with_db
(
'
CITAMA_ANA_5/julie_finetune_nolib.tsv
'
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment