Skip to content
Snippets Groups Projects
Commit 8be8f13d authored by Schneider Leo's avatar Schneider Leo
Browse files

df oktoberfest

parent 1f80516d
No related branches found
No related tags found
No related merge requests found
import pandas as pd import pandas as pd
from sympy import false
ALPHABET_UNMOD = {
"": 0,
"A": 1,
"C": 2,
"D": 3,
"E": 4,
"F": 5,
"G": 6,
"H": 7,
"I": 8,
"K": 9,
"L": 10,
"M": 11,
"N": 12,
"P": 13,
"Q": 14,
"R": 15,
"S": 16,
"T": 17,
"V": 18,
"W": 19,
"Y": 20,
"M(UniMod:35)": 21,
"CaC": 22
}
ALPHABET_UNMOD_REV = {v: k for k, v in ALPHABET_UNMOD.items()}
def numerical_to_alphabetical_str(s):
seq = ''
s = s.replace('[','')
s = s.replace(']', '')
arr = s.split(',')
arr = list(map(int, arr))
for i in range(len(arr)):
seq+=ALPHABET_UNMOD_REV[arr[i]]
return seq
if __name__ == '__main__': if __name__ == '__main__':
seq=[] seq=[]
...@@ -8,12 +46,17 @@ if __name__ == '__main__': ...@@ -8,12 +46,17 @@ if __name__ == '__main__':
file.close() file.close()
remove = False remove = False
index_to_remove=[] index_to_remove=[]
updated_content=[]
ind=0
predicted_lib=pd.read_csv('../output/out_lib_oktoberfest.csv')
pred_rt=predicted_lib['rt pred']
for i in range(len(content)) : for i in range(len(content)) :
if remove: if remove:
if 'Name:' in content[i]: if 'Name:' in content[i]:
remove = False remove = False
else : else :
index_to_remove.append(i) pass
if 'Name:'in content[i]: if 'Name:'in content[i]:
s=content[i].split(':')[1].split('/')[0] s=content[i].split(':')[1].split('/')[0]
...@@ -27,4 +70,16 @@ if __name__ == '__main__': ...@@ -27,4 +70,16 @@ if __name__ == '__main__':
df['state'] = 'holdout' df['state'] = 'holdout'
df.to_csv('spectral_lib/df_predicted_library_oktoberfest.csv',index=False) df.to_csv('spectral_lib/df_predicted_library_oktoberfest.csv',index=False)
updated_content=[]
ind=0
predicted_lib=pd.read_csv('../output/out_lib_oktoberfest.csv')
predicted_lib['seq'] = predicted_lib['seq'].map(numerical_to_alphabetical_str)
predicted_lib['sequence']=predicted_lib['seq']
pred_rt=predicted_lib['rt pred']
df_joined = pd.merge(df,predicted_lib[['rt pred','sequence']],on='sequence',how='left')
#1787661 avec C , 15104040 sans #1787661 avec C , 15104040 sans
\ No newline at end of file
...@@ -136,8 +136,7 @@ if __name__ =='__main__': ...@@ -136,8 +136,7 @@ if __name__ =='__main__':
model.load_state_dict(torch.load(args.model_weigh, weights_only=True)) model.load_state_dict(torch.load(args.model_weigh, weights_only=True))
print(args.dataset_test) data_test = load_data(data_source=args.dataset_test, batch_size=args.batch_size, length=30, mode=args.split_test,
data_test = load_data(data_source='data/spectral_lib/data_uniprot_base.csv', batch_size=args.batch_size, length=30, mode=args.split_test,
seq_col=args.seq_test) seq_col=args.seq_test)
predict(data_test, model, args.output) predict(data_test, model, args.output)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment