Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DIA augmentation
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Léo Schneider
DIA augmentation
Commits
945682f5
Commit
945682f5
authored
3 months ago
by
Schneider Leo
Browse files
Options
Downloads
Patches
Plain Diff
df oktoberfest
parent
e34578b4
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
data/data_processing.py
+1
-1
1 addition, 1 deletion
data/data_processing.py
data/msp_file_extraction.py
+25
-4
25 additions, 4 deletions
data/msp_file_extraction.py
diann_lib_processing.py
+56
-7
56 additions, 7 deletions
diann_lib_processing.py
with
82 additions
and
12 deletions
data/data_processing.py
+
1
−
1
View file @
945682f5
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
import
pandas
as
pd
#
from loess.loess_1d import loess_1d
from
loess.loess_1d
import
loess_1d
import
time
import
time
ALPHABET_UNMOD
=
{
ALPHABET_UNMOD
=
{
...
...
This diff is collapsed.
Click to expand it.
data/msp_file_extraction.py
+
25
−
4
View file @
945682f5
...
@@ -71,10 +71,31 @@ if __name__ == '__main__':
...
@@ -71,10 +71,31 @@ if __name__ == '__main__':
# df.to_csv('spectral_lib/df_predicted_library_oktoberfest.csv',index=False)
# df.to_csv('spectral_lib/df_predicted_library_oktoberfest.csv',index=False)
#
#
#
#
# #write new .msp with new RT
#write new .msp with new RT
#
seq
=
[]
#
df
=
pd
.
read_csv
(
'
spectral_lib/df_predicted_library_oktoberfest.csv
'
)
file
=
open
(
"
spectral_lib/predicted_library.msp
"
,
"
r
"
)
content
=
file
.
readlines
()
file
.
close
()
remove
=
False
predicted_lib
=
pd
.
read_csv
(
'
../output/out_lib_oktoberfest.csv
'
)
pred_rt
=
predicted_lib
[
'
rt pred
'
]
for
i
in
range
(
len
(
content
))
:
if
remove
:
if
'
Name:
'
in
content
[
i
]:
remove
=
False
else
:
pass
if
'
Name:
'
in
content
[
i
]:
s
=
content
[
i
].
split
(
'
:
'
)[
1
].
split
(
'
/
'
)[
0
]
if
'
C
'
in
s
or
len
(
s
)
>
30
:
remove
=
True
else
:
seq
.
append
(
s
)
df
=
pd
.
DataFrame
(
seq
,
columns
=
[
'
sequence
'
])
predicted_lib
=
pd
.
read_csv
(
'
../output/out_lib_oktoberfest.csv
'
)
predicted_lib
=
pd
.
read_csv
(
'
../output/out_lib_oktoberfest.csv
'
)
...
...
This diff is collapsed.
Click to expand it.
diann_lib_processing.py
+
56
−
7
View file @
945682f5
...
@@ -5,6 +5,8 @@ import pyarrow.parquet as pq
...
@@ -5,6 +5,8 @@ import pyarrow.parquet as pq
import
pyarrow
as
pa
import
pyarrow
as
pa
import
torch
import
torch
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
from
loess.loess_1d
import
loess_1d
from
model.model
import
ModelTransformer
from
model.model
import
ModelTransformer
from
config
import
load_args
from
config
import
load_args
from
data.dataset
import
load_data
from
data.dataset
import
load_data
...
@@ -93,34 +95,81 @@ def predict(data_pred, model, output_path):
...
@@ -93,34 +95,81 @@ def predict(data_pred, model, output_path):
if
__name__
==
'
__main__
'
:
if
__name__
==
'
__main__
'
:
#
df = load_lib('
data/
spectral_lib/first_lib.parquet')
df
=
load_lib
(
'
spectral_lib/first_lib.parquet
'
)
#
# plt.hist(df['RT'])
# plt.hist(df['RT'])
# plt.savefig('test.png')
# plt.savefig('test.png')
#
#
# df_2 = pd.read_csv('data
/data
_prosit/data.csv')
# df_2 = pd.read_csv('data_prosit/data.csv')
#
#
# plt.clf()
# plt.clf()
# plt.hist(df_2['irt'])
# plt.hist(df_2['irt'])
# plt.savefig('test2.png')
# plt.savefig('test2.png')
#
# df_2 = extract_sequence(df).reset_index(drop=True)
# df_2 = extract_sequence(df).reset_index(drop=True)
#
#
# pred = pd.read_csv('../output/out_uniprot_base.csv')
# pred = pd.read_csv('../output/out_uniprot_base.csv')
#
# pred['seq']=pred['seq'].map(numerical_to_alphabetical_str)
# pred['seq']=pred['seq'].map(numerical_to_alphabetical_str)
#
#
# pred['Modified.Sequence']=pred['seq']
# pred['Modified.Sequence']=pred['seq']
#
#
# result = pd.merge(df,pred[['Modified.Sequence','rt pred']],on='Modified.Sequence',how='left')
# result = pd.merge(df,pred[['Modified.Sequence','rt pred']],on='Modified.Sequence',how='left')
#
#
# result['RT']=result['rt pred']
#
#
# #alignement
#
# ref = pd.read_csv('data_prosit/data_noc.csv')
# df_ISA = pd.read_csv('data_ISA/data_aligned_isa_noc.csv')
#
# dataset, reference, column_dataset, column_ref, seq_data, seq_ref = df_ISA, ref, 'irt_scaled', 'irt', 'sequence','sequence',
#
# dataset_ref=dataset[dataset['state']=='train']
# dataset_unique = dataset_ref[[seq_data,column_dataset]].groupby(seq_data).mean()
# print('unique',len(dataset_unique))
# reference_unique = reference[[seq_ref,column_ref]].groupby(seq_ref).mean()
# seq_ref = reference_unique.index
# seq_common = dataset_unique.index
# seq_ref = seq_ref.tolist()
# seq_common = seq_common.tolist()
#
# seq_ref = [tuple(l) for l in seq_ref]
# seq_common = [tuple(l) for l in seq_common]
#
# ind_dict_ref = dict((k, i) for i, k in enumerate(seq_ref))
# inter = set(ind_dict_ref).intersection(seq_common)
# print(len(inter))
#
# ind_dict_ref = [ind_dict_ref[x] for x in inter]
#
# indices_common = dict((k, i) for i, k in enumerate(seq_common))
# indices_common = [indices_common[x] for x in inter]
#
#
# rt_ref = reference_unique[column_ref][ind_dict_ref].reset_index()
# rt_data = dataset_unique[column_dataset][indices_common].reset_index()
#
# plt.scatter(rt_data[column_dataset].tolist(),rt_ref[column_ref].tolist(),s=0.1)
# plt.savefig('test.png')
#
# #présence de NAN qui casse le réalignement (solution temporaire : remplacer par 0.
# result['rt pred']=result['rt pred'].fillna(value=0)
# xout, yout, wout = loess_1d(np.array(rt_data[column_dataset].tolist()), np.array(rt_ref[column_ref].tolist()),
# xnew=result['rt pred'],
# degree=1,
# npoints=None, rotate=False, sigy=None)
#
#
# #writing results
#
# result['RT'] = yout
#
#
# result = result.drop('rt pred', axis=1)
# result = result.drop('rt pred', axis=1)
#
#
# table = pa.Table.from_pandas(result)
# table = pa.Table.from_pandas(result)
#
#
# pq.write_table(table, 'spectral_lib/custom_first_lib.parquet')
# pq.write_table(table, 'spectral_lib/custom_first_lib
_prosit_aligned
.parquet')
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment