Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
Peptide Detectability
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Léo Schneider
Peptide Detectability
Commits
794d5f10
Commit
794d5f10
authored
3 months ago
by
Schneider Leo
Browse files
Options
Downloads
Patches
Plain Diff
modelisation biais collecte de données
parent
26bffa3f
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
main.py
+64
-1
64 additions, 1 deletion
main.py
modelisation_flyer.py
+70
-0
70 additions, 0 deletions
modelisation_flyer.py
with
134 additions
and
1 deletion
main.py
+
64
−
1
View file @
794d5f10
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
import
pandas
as
pd
import
tensorflow
as
tf
import
dlomix
import
sys
import
os
from
dlomix.models
import
DetectabilityModel
from
dlomix.models
import
DetectabilityModel
from
dlomix.constants
import
CLASSES_LABELS
,
alphabet
,
aa_to_int_dict
from
dlomix.constants
import
CLASSES_LABELS
,
alphabet
,
aa_to_int_dict
from
dlomix.data
import
DetectabilityDataset
from
dlomix.data
import
DetectabilityDataset
from
datasets
import
load_dataset
,
DatasetDict
from
dlomix.reports.DetectabilityReport
import
DetectabilityReport
,
predictions_report
WANDB_REPORT_API_DISABLE_MESSAGE
=
True
def
fasta_like_to_data
(
path
):
def
fasta_like_to_data
(
path
):
file
=
open
(
path
,
"
r
"
)
file
=
open
(
path
,
"
r
"
)
...
@@ -19,6 +26,61 @@ def strip_lines(s):
...
@@ -19,6 +26,61 @@ def strip_lines(s):
s
=
s
.
split
(
'
'
)[
1
]
s
=
s
.
split
(
'
'
)[
1
]
return
s
return
s
def
test_model
():
total_num_classes
=
len
(
CLASSES_LABELS
)
input_dimension
=
len
(
alphabet
)
num_cells
=
64
model
=
DetectabilityModel
(
num_units
=
num_cells
,
num_clases
=
total_num_classes
)
model
.
built
=
True
model_save_path
=
'
pretrained_model/original_detectability_fine_tuned_model_FINAL
'
model
.
load_weights
(
model_save_path
)
# hf_data_name = "Wilhelmlab/detectability-sinitcyn"
# hf_data_name = "Wilhelmlab/detectability-wang"
hf_data_name
=
"
Wilhelmlab/detectability-proteometools
"
hf_dataset_split
=
load_dataset
(
hf_data_name
,
split
=
"
test
"
)
hf_dataset
=
DatasetDict
({
"
test
"
:
hf_dataset_split
})
max_pep_length
=
40
BATCH_SIZE
=
128
detectability_data
=
DetectabilityDataset
(
data_source
=
hf_dataset
,
data_format
=
'
hf
'
,
max_seq_len
=
max_pep_length
,
label_column
=
"
Classes
"
,
sequence_column
=
"
Sequences
"
,
dataset_columns_to_keep
=
None
,
batch_size
=
BATCH_SIZE
,
with_termini
=
False
,
alphabet
=
aa_to_int_dict
)
predictions
=
model
.
predict
(
detectability_data
.
tensor_test_data
)
test_targets
=
detectability_data
[
"
test
"
][
"
Classes
"
]
test_data_df
=
pd
.
DataFrame
(
{
"
Sequences
"
:
detectability_data
[
"
test
"
][
"
_parsed_sequence
"
],
# get the raw parsed sequences
"
Classes
"
:
test_targets
,
# get the test targets from above
# get the Proteins column from the dataset object
}
)
test_data_df
.
Sequences
=
test_data_df
.
Sequences
.
apply
(
lambda
x
:
""
.
join
(
x
))
# join the sequences since they are a list of string amino acids.
num_classes
=
np
.
max
(
test_targets
)
+
1
test_targets_one_hot
=
np
.
eye
(
num_classes
)[
test_targets
]
test_targets_one_hot
.
shape
,
len
(
test_targets
)
report
=
DetectabilityReport
(
targets
=
test_targets_one_hot
,
predictions
=
predictions
,
input_data_df
=
test_data_df
,
output_path
=
"
./output/report_on_Sinitcyn_2000_proteins_test_set_labeled
"
,
history
=
None
,
rank_by_prot
=
True
,
threshold
=
None
,
name_of_dataset
=
'
Sinitcyn 2000 proteins test set
'
,
name_of_model
=
'
Fine-tuned model (Original)
'
)
results_df
=
report
.
detectability_report_table
def
main
(
input_data_path
):
def
main
(
input_data_path
):
print
(
'
Reading file
'
)
print
(
'
Reading file
'
)
file
=
open
(
input_data_path
,
"
r
"
)
file
=
open
(
input_data_path
,
"
r
"
)
...
@@ -102,4 +164,5 @@ def main(input_data_path):
...
@@ -102,4 +164,5 @@ def main(input_data_path):
new_file
.
close
()
new_file
.
close
()
if
__name__
==
'
__main__
'
:
if
__name__
==
'
__main__
'
:
main
(
'
250107_FASTA_RP_GroEL_GroES_Tuf_5pct_assemble_peptides_list.txt
'
)
# main()
main
(
'
241205_list_test_peptide_detectability.txt
'
)
This diff is collapsed.
Click to expand it.
modelisation_flyer.py
0 → 100644
+
70
−
0
View file @
794d5f10
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
numpy.random
import
pandas
as
pd
from
tensorflow_probability.python.layers.distribution_layer
import
sample
rng
=
np
.
random
.
default_rng
()
PROT_NUM
=
1000
peptide_per_prot
=
rng
.
normal
(
10
,
3
,
PROT_NUM
)
plt
.
hist
(
peptide_per_prot
)
plt
.
show
()
plt
.
savefig
(
'
dist_peptide_prot.png
'
)
plt
.
clf
()
log_intensity_test
=
rng
.
normal
(
8
,
0.8
,
1000
)
plt
.
hist
(
log_intensity_test
)
plt
.
show
()
plt
.
savefig
(
'
dist_log_intensity.png
'
)
plt
.
clf
()
no_id
=
0
int_total
=
np
.
array
([])
int_normalized_first
=
np
.
array
([])
for
num_peptides
in
peptide_per_prot
:
if
int
(
num_peptides
)
>
0
:
coverage
=
rng
.
binomial
(
num_peptides
,
0.4
)
log_intensities
=
rng
.
normal
(
8
,
2
,
coverage
)
if
coverage
>
3
and
coverage
>
0.2
*
num_peptides
:
no_id
+=
int
(
num_peptides
)
-
coverage
intensities
=
np
.
exp
(
log_intensities
)
int_total
=
np
.
concatenate
((
int_total
,
intensities
))
int_normalized
=
intensities
/
np
.
max
(
intensities
)
int_normalized_first
=
np
.
concatenate
((
int_normalized_first
,
int_normalized
))
int_normalized_after
=
int_total
/
np
.
max
(
int_total
)
threshold_true_weak_flyer
=
sorted
(
int_normalized_after
)[
int
(
len
(
int_normalized_after
)
/
3
)]
threshold_true_medium_flyer
=
sorted
(
int_normalized_after
)[
int
(
2
*
len
(
int_normalized_after
)
/
3
)]
threshold_measure_weak_flyer
=
sorted
(
int_normalized_first
)[
int
(
len
(
int_normalized_first
)
/
3
)]
threshold_measure_medium_flyer
=
sorted
(
int_normalized_first
)[
int
(
2
*
len
(
int_normalized_first
)
/
3
)]
label_true
=
[]
label_measure
=
[]
for
i
in
range
(
int_normalized_after
.
size
):
if
int_normalized_after
[
i
]
<
threshold_true_weak_flyer
:
label_true
.
append
(
'
Weak flyer
'
)
elif
int_normalized_after
[
i
]
<
threshold_true_medium_flyer
:
label_true
.
append
(
'
Medium flyer
'
)
else
:
label_true
.
append
(
'
Strong flyer
'
)
if
int_normalized_first
[
i
]
<
threshold_measure_weak_flyer
:
label_measure
.
append
(
'
Weak flyer
'
)
elif
int_normalized_first
[
i
]
<
threshold_measure_medium_flyer
:
label_measure
.
append
(
'
Medium flyer
'
)
else
:
label_measure
.
append
(
'
Strong flyer
'
)
data
=
{
'
True label
'
:
label_true
,
'
Measured label
'
:
label_measure
}
df
=
pd
.
DataFrame
(
data
=
data
)
acc_measure
=
df
[
df
[
'
True label
'
]
==
df
[
'
Measured label
'
]].
shape
[
0
]
/
df
.
shape
[
0
]
acc_with_no_id
=
(
no_id
+
df
[
df
[
'
True label
'
]
==
df
[
'
Measured label
'
]].
shape
[
0
])
/
(
no_id
+
df
.
shape
[
0
])
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment