Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pseudo_image
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Léo Schneider
pseudo_image
Commits
2217fd04
Commit
2217fd04
authored
4 days ago
by
Schneider Leo
Browse files
Options
Downloads
Patches
Plain Diff
add : ray opti
parent
4059d5c6
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
image_ref/main_ray.py
+263
-0
263 additions, 0 deletions
image_ref/main_ray.py
with
263 additions
and
0 deletions
image_ref/main_ray.py
0 → 100644
+
263
−
0
View file @
2217fd04
import
os
import
tempfile
from
config
import
load_args_contrastive
from
dataset_ref
import
load_data_duo
import
torch
import
torch.nn
as
nn
from
model
import
Classification_model_duo_contrastive
import
torch.optim
as
optim
#ray
from
ray.air
import
RunConfig
from
ray.tune.search.optuna
import
OptunaSearch
from
ray
import
train
,
tune
from
ray.train
import
Checkpoint
from
ray.tune.schedulers
import
ASHAScheduler
def
train_model
(
config
,
args
):
# load data
data_train
,
data_val_batch
,
_
=
load_data_duo
(
base_dir_train
=
args
.
dataset_train_dir
,
base_dir_val
=
args
.
dataset_val_dir
,
base_dir_test
=
args
.
dataset_test_dir
,
batch_size
=
args
.
batch_size
,
ref_dir
=
args
.
dataset_ref_dir
,
noise_threshold
=
config
[
'
noise
'
],
positive_prop
=
config
[
'
positive_prop
'
],
sampler
=
config
[
'
sampler
'
])
# load model
model
=
Classification_model_duo_contrastive
(
model
=
args
.
model
,
n_class
=
2
)
# move parameters to GPU
model
.
double
()
device
=
"
cpu
"
if
torch
.
cuda
.
is_available
():
device
=
"
cuda:0
"
if
torch
.
cuda
.
device_count
()
>
1
:
print
(
type
(
model
))
net
=
torch
.
nn
.
DataParallel
(
model
)
print
(
type
(
net
))
model
.
to
(
device
)
if
config
[
'
optimizer
'
]
==
'
Adam
'
:
optimizer
=
optim
.
Adam
(
model
.
parameters
(),
lr
=
config
[
"
lr
"
])
elif
config
[
'
optimizer
'
]
==
'
SGD
'
:
optimizer
=
optim
.
SGD
(
model
.
parameters
(),
lr
=
config
[
"
lr
"
],
momentum
=
0.9
)
# init training
loss_function
=
nn
.
CrossEntropyLoss
()
# Load existing checkpoint through `get_checkpoint()` API.
if
train
.
get_checkpoint
():
loaded_checkpoint
=
train
.
get_checkpoint
()
with
loaded_checkpoint
.
as_directory
()
as
loaded_checkpoint_dir
:
model_state
,
optimizer_state
=
torch
.
load
(
os
.
path
.
join
(
loaded_checkpoint_dir
,
"
checkpoint.pt
"
)
)
net
.
load_state_dict
(
model_state
)
optimizer
.
load_state_dict
(
optimizer_state
)
# train model
for
e
in
range
(
args
.
epoches
):
#train loss
model
.
train
()
losses
=
0.
acc
=
0.
for
param
in
model
.
parameters
():
param
.
requires_grad
=
True
for
imaer
,
imana
,
img_ref
,
label
in
data_train
:
label
=
label
.
long
()
if
torch
.
cuda
.
is_available
():
imaer
=
imaer
.
cuda
()
imana
=
imana
.
cuda
()
img_ref
=
img_ref
.
cuda
()
label
=
label
.
cuda
()
if
torch
.
cuda
.
device_count
()
>
1
:
pred_logits
=
model
.
module
.
forward
(
imaer
,
imana
,
img_ref
)
else
:
pred_logits
=
model
.
forward
(
imaer
,
imana
,
img_ref
)
pred_class
=
torch
.
argmax
(
pred_logits
,
dim
=
1
)
acc
+=
(
pred_class
==
label
).
sum
().
item
()
loss
=
loss_function
(
pred_logits
,
label
)
losses
+=
loss
.
item
()
optimizer
.
zero_grad
()
loss
.
backward
()
optimizer
.
step
()
losses_train
=
losses
/
len
(
data_train
.
dataset
)
acc_train
=
acc
/
len
(
data_train
.
dataset
)
#validation loss
model
.
eval
()
losses
=
0.
acc
=
0.
acc_contrastive
=
0.
for
param
in
model
.
parameters
():
param
.
requires_grad
=
False
for
imaer
,
imana
,
img_ref
,
label
in
data_val_batch
:
imaer
=
imaer
.
transpose
(
0
,
1
)
imana
=
imana
.
transpose
(
0
,
1
)
img_ref
=
img_ref
.
transpose
(
0
,
1
)
label
=
label
.
transpose
(
0
,
1
)
label
=
label
.
squeeze
()
label
=
label
.
long
()
if
torch
.
cuda
.
is_available
():
imaer
=
imaer
.
cuda
()
imana
=
imana
.
cuda
()
img_ref
=
img_ref
.
cuda
()
label
=
label
.
cuda
()
label_class
=
torch
.
argmin
(
label
).
data
.
cpu
().
numpy
()
if
torch
.
cuda
.
device_count
()
>
1
:
pred_logits
=
model
.
module
.
forward
(
imaer
,
imana
,
img_ref
)
else
:
pred_logits
=
model
.
forward
(
imaer
,
imana
,
img_ref
)
pred_class
=
torch
.
argmax
(
pred_logits
[:,
0
]).
tolist
()
acc_contrastive
+=
(
torch
.
argmax
(
pred_logits
,
dim
=
1
).
data
.
cpu
().
numpy
()
==
label
.
data
.
cpu
().
numpy
()).
sum
().
item
()
acc
+=
(
pred_class
==
label_class
)
loss
=
loss_function
(
pred_logits
,
label
)
losses
+=
loss
.
item
()
losses_val
=
losses
/
(
label
.
shape
[
0
]
*
len
(
data_val_batch
.
dataset
))
acc_val
=
acc
/
(
len
(
data_val_batch
.
dataset
))
acc_contrastive_val
=
acc_contrastive
/
(
label
.
shape
[
0
]
*
len
(
data_val_batch
.
dataset
))
# Here we save a checkpoint. It is automatically registered with
# Ray Tune and will potentially be accessed through in ``get_checkpoint()``
# in future iterations.
# Note to save a file like checkpoint, you still need to put it under a directory
# to construct a checkpoint.
with
tempfile
.
TemporaryDirectory
(
dir
=
'
lustre/fswork/projects/rech/bun/ucg81ws/these/pseudo_image/checkpoints
'
)
as
temp_checkpoint_dir
:
path
=
os
.
path
.
join
(
temp_checkpoint_dir
,
"
checkpoint.pt
"
)
torch
.
save
(
(
model
.
state_dict
(),
optimizer
.
state_dict
()),
path
)
checkpoint
=
Checkpoint
.
from_directory
(
temp_checkpoint_dir
)
print
(
checkpoint
.
path
)
train
.
report
(
{
"
train loss
"
:
losses_train
,
"
train contrastive acc
"
:
acc_train
,
"
val loss
"
:
losses_val
,
"
val acc
"
:
acc_val
,
"
val contrastive acc
"
:
acc_contrastive_val
,},
checkpoint
=
checkpoint
,)
print
(
"
Finished Training
"
)
def
test_model
(
best_result
,
args
):
# load data
_
,
data_val_batch
,
_
=
load_data_duo
(
base_dir_train
=
args
.
dataset_train_dir
,
base_dir_val
=
args
.
dataset_val_dir
,
base_dir_test
=
args
.
dataset_test_dir
,
batch_size
=
args
.
batch_size
,
ref_dir
=
args
.
dataset_ref_dir
,
noise_threshold
=
best_result
.
config
[
'
noise
'
],
positive_prop
=
best_result
.
config
[
'
positive_prop
'
],
sampler
=
best_result
.
config
[
'
sampler
'
])
# load model
model
=
Classification_model_duo_contrastive
(
model
=
args
.
model
,
n_class
=
2
)
model
.
double
()
# load weight
checkpoint_path
=
os
.
path
.
join
(
best_result
.
checkpoint
.
to_directory
(),
"
checkpoint.pt
"
)
model_state
,
optimizer_state
=
torch
.
load
(
checkpoint_path
)
model
.
load_state_dict
(
model_state
)
# move parameters to GPU
device
=
"
cpu
"
if
torch
.
cuda
.
is_available
():
device
=
"
cuda:0
"
if
torch
.
cuda
.
device_count
()
>
1
:
print
(
type
(
model
))
net
=
torch
.
nn
.
DataParallel
(
model
)
print
(
type
(
net
))
model
.
to
(
device
)
# init training
loss_function
=
nn
.
CrossEntropyLoss
()
model
.
eval
()
losses
=
0.
acc
=
0.
acc_contrastive
=
0.
for
param
in
model
.
parameters
():
param
.
requires_grad
=
False
for
imaer
,
imana
,
img_ref
,
label
in
data_val_batch
:
imaer
=
imaer
.
transpose
(
0
,
1
)
imana
=
imana
.
transpose
(
0
,
1
)
img_ref
=
img_ref
.
transpose
(
0
,
1
)
label
=
label
.
transpose
(
0
,
1
)
label
=
label
.
squeeze
()
label
=
label
.
long
()
if
torch
.
cuda
.
is_available
():
imaer
=
imaer
.
cuda
()
imana
=
imana
.
cuda
()
img_ref
=
img_ref
.
cuda
()
label
=
label
.
cuda
()
label_class
=
torch
.
argmin
(
label
).
data
.
cpu
().
numpy
()
pred_logits
=
model
.
forward
(
imaer
,
imana
,
img_ref
)
pred_class
=
torch
.
argmax
(
pred_logits
[:,
0
]).
tolist
()
acc_contrastive
+=
(
torch
.
argmax
(
pred_logits
,
dim
=
1
).
data
.
cpu
().
numpy
()
==
label
.
data
.
cpu
().
numpy
()).
sum
().
item
()
acc
+=
(
pred_class
==
label_class
)
loss
=
loss_function
(
pred_logits
,
label
)
losses
+=
loss
.
item
()
losses
=
losses
/
(
label
.
shape
[
0
]
*
len
(
data_val_batch
.
dataset
))
acc
=
acc
/
(
len
(
data_val_batch
.
dataset
))
acc_contrastive
=
acc_contrastive
/
(
label
.
shape
[
0
]
*
len
(
data_val_batch
.
dataset
))
print
(
"
Best trial test set AsyncHyperBandSchedulerloss: loss {} acc {} acc_contrastive {}
"
.
format
(
losses
,
acc
,
acc_contrastive
))
def
main
(
args
,
gpus_per_trial
=
1
):
config
=
{
"
lr
"
:
tune
.
loguniform
(
1e-4
,
1e-2
),
"
noise
"
:
tune
.
loguniform
(
0
,
500
),
"
positive_prop
"
:
tune
.
uniform
(
0
,
100
),
"
optimizer
"
:
tune
.
choice
([
'
Adam
'
,
'
SGD
'
]),
"
sampler
"
:
tune
.
choice
([
'
random
'
,
'
balanced
'
]),
}
scheduler
=
ASHAScheduler
(
max_t
=
100
,
grace_period
=
20
,
reduction_factor
=
3
,
brackets
=
1
,
)
algo
=
OptunaSearch
()
tuner
=
tune
.
Tuner
(
tune
.
with_resources
(
tune
.
with_parameters
(
train_model
,
args
=
args
),
resources
=
{
"
cpu
"
:
80
,
"
gpu
"
:
gpus_per_trial
}
),
tune_config
=
tune
.
TuneConfig
(
time_budget_s
=
3600
*
23.5
,
search_alg
=
algo
,
scheduler
=
scheduler
,
num_samples
=
50
,
metric
=
"
val loss
"
,
mode
=
'
min
'
,
),
run_config
=
RunConfig
(
storage_path
=
"
/lustre/fswork/projects/rech/bun/ucg81ws/these/pseudo_image/image_ref/ray_results_test
"
,
name
=
"
test_experiment_no_scheduler
"
),
param_space
=
config
)
results
=
tuner
.
fit
()
best_result
=
results
.
get_best_result
(
"
val loss
"
,
"
min
"
)
print
(
"
Best trial config: {}
"
.
format
(
best_result
.
config
))
print
(
"
Best trial final validation loss: {}
"
.
format
(
best_result
.
metrics
[
"
loss
"
]))
print
(
"
Best trial final validation accuracy: {}
"
.
format
(
best_result
.
metrics
[
"
accuracy
"
]))
test_model
(
best_result
,
args
)
if
__name__
==
'
__main__
'
:
args
=
load_args_contrastive
()
print
(
args
)
main
(
args
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment