Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pseudo_image
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Léo Schneider
pseudo_image
Commits
2886a781
Commit
2886a781
authored
2 weeks ago
by
Schneider Leo
Browse files
Options
Downloads
Patches
Plain Diff
add : rt shift transform
parent
18fe8085
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
barlow_twin_like/dataset_barlow.py
+29
-8
29 additions, 8 deletions
barlow_twin_like/dataset_barlow.py
with
29 additions
and
8 deletions
barlow_twin_like/dataset_barlow.py
+
29
−
8
View file @
2886a781
...
@@ -16,6 +16,22 @@ from torch.utils.data import WeightedRandomSampler
...
@@ -16,6 +16,22 @@ from torch.utils.data import WeightedRandomSampler
IMG_EXTENSIONS
=
"
.npy
"
IMG_EXTENSIONS
=
"
.npy
"
class
Random_shift_rt
:
"""
With a probability prob, shifts verticaly the image depending on a gaussian distribution
"""
def
__init__
(
self
,
prob
,
mean
,
std
):
self
.
prob
=
prob
self
.
mean
=
torch
.
tensor
(
float
(
mean
))
self
.
std
=
float
(
std
)
def
__call__
(
self
,
x
):
if
np
.
random
.
rand
()
<
self
.
prob
:
shift
=
torch
.
normal
(
self
.
mean
,
self
.
std
)
return
transforms
.
functional
.
affine
(
x
,
0
,
[
0
,
shift
],
1
,
[
0
,
0
])
return
x
def
npy_loader
(
path
):
def
npy_loader
(
path
):
sample
=
torch
.
from_numpy
(
np
.
load
(
path
))
sample
=
torch
.
from_numpy
(
np
.
load
(
path
))
sample
=
sample
.
unsqueeze
(
0
)
sample
=
sample
.
unsqueeze
(
0
)
...
@@ -200,22 +216,27 @@ class ImageFolderDuo(data.Dataset):
...
@@ -200,22 +216,27 @@ class ImageFolderDuo(data.Dataset):
def
load_data_duo
(
base_dir_train
,
base_dir_val
,
base_dir_test
,
batch_size
,
shuffle
=
True
,
ref_dir
=
None
,
sampler
=
None
):
def
load_data_duo
(
base_dir_train
,
base_dir_val
,
base_dir_test
,
batch_size
,
shuffle
=
True
,
ref_dir
=
None
,
sampler
=
None
):
transform
=
transforms
.
Compose
(
train_transform
=
transforms
.
Compose
(
[
Random_shift_rt
(
1
,
0
,
15
),
transforms
.
Resize
((
224
,
224
)),
transforms
.
Normalize
(
0.5
,
0.5
)])
val_transform
=
transforms
.
Compose
(
[
transforms
.
Resize
((
224
,
224
)),
[
transforms
.
Resize
((
224
,
224
)),
transforms
.
Normalize
(
0.5
,
0.5
)])
transforms
.
Normalize
(
0.5
,
0.5
)])
print
(
'
Default val transform
'
)
print
(
'
Default val transform
'
)
train_dataset
=
ImageFolder
(
root
=
base_dir_train
,
ref_dir
=
ref_dir
,
transform
=
transform
,
ref_transform
=
transform
)
train_dataset
=
ImageFolder
(
root
=
base_dir_train
,
ref_dir
=
ref_dir
,
transform
=
train_
transform
,
ref_transform
=
train_
transform
)
val_dataset
=
ImageFolder
(
root
=
base_dir_val
,
ref_dir
=
ref_dir
,
transform
=
transform
,
ref_transform
=
transform
)
val_dataset
=
ImageFolder
(
root
=
base_dir_val
,
ref_dir
=
ref_dir
,
transform
=
train_
transform
,
ref_transform
=
val_
transform
)
train_dataset_classifier
=
ImageFolderDuo
(
root
=
base_dir_train
,
transform
=
transform
)
train_dataset_classifier
=
ImageFolderDuo
(
root
=
base_dir_train
,
transform
=
train_
transform
)
val_dataset_classifier
=
ImageFolderDuo
(
root
=
base_dir_val
,
transform
=
transform
)
val_dataset_classifier
=
ImageFolderDuo
(
root
=
base_dir_val
,
transform
=
val_
transform
)
if
base_dir_test
is
not
None
:
if
base_dir_test
is
not
None
:
test_dataset
=
ImageFolder
(
root
=
base_dir_test
,
ref_dir
=
ref_dir
,
transform
=
transform
,
ref_transform
=
transform
)
test_dataset
=
ImageFolder
(
root
=
base_dir_test
,
ref_dir
=
ref_dir
,
transform
=
val_
transform
,
ref_transform
=
val_
transform
)
test_dataset_classifier
=
ImageFolderDuo
(
root
=
base_dir_test
,
transform
=
transform
)
test_dataset_classifier
=
ImageFolderDuo
(
root
=
base_dir_test
,
transform
=
val_
transform
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment