Skip to content
Snippets Groups Projects
Commit 85d9b647 authored by Schneider Leo's avatar Schneider Leo
Browse files

add : model contrastive and dataloader

parent a93e5bcc
No related branches found
No related tags found
No related merge requests found
......@@ -19,3 +19,24 @@ def load_args():
args = parser.parse_args()
return args
def load_args_contrastive():
parser = argparse.ArgumentParser()
parser.add_argument('--epoches', type=int, default=3)
parser.add_argument('--save_inter', type=int, default=50)
parser.add_argument('--eval_inter', type=int, default=1)
parser.add_argument('--noise_threshold', type=int, default=0)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--model', type=str, default='ResNet18')
parser.add_argument('--model_type', type=str, default='duo')
parser.add_argument('--dataset_dir', type=str, default='../data/processed_data/npy_image/data_training')
parser.add_argument('--dataset_ref_dir', type=str, default='image_ref/img_ref')
parser.add_argument('--output', type=str, default='../output/out_contrastive.csv')
parser.add_argument('--save_path', type=str, default='../output/best_model_constrastive.pt')
parser.add_argument('--pretrain_path', type=str, default=None)
args = parser.parse_args()
return args
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
import torch.utils.data as data
from PIL import Image
import os
import os.path
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union
from pathlib import Path
from collections import OrderedDict
from sklearn.model_selection import train_test_split
IMG_EXTENSIONS = ".npy"
class Threshold_noise:
"""Remove intensities under given threshold"""
def __init__(self, threshold=100.):
self.threshold = threshold
def __call__(self, x):
return torch.where((x <= self.threshold), 0.,x)
class Log_normalisation:
"""Log normalisation of intensities"""
def __init__(self, eps=1e-5):
self.epsilon = eps
def __call__(self, x):
return torch.log(x+1+self.epsilon)/torch.log(torch.max(x)+1+self.epsilon)
class Random_shift_rt():
pass
def default_loader(path):
return Image.open(path).convert('RGB')
def npy_loader(path):
sample = torch.from_numpy(np.load(path))
sample = sample.unsqueeze(0)
return sample
def remove_aer_ana(l):
l = map(lambda x : x.split('_')[0],l)
return list(OrderedDict.fromkeys(l))
def make_dataset_custom(
directory: Union[str, Path],
class_to_idx: Optional[Dict[str, int]] = None,
extensions: Optional[Union[str, Tuple[str, ...]]] = IMG_EXTENSIONS,
is_valid_file: Optional[Callable[[str], bool]] = None,
allow_empty: bool = False,
) -> List[Tuple[str, str, int]]:
"""Generates a list of samples of a form (path_to_sample, class).
See :class:`DatasetFolder` for details.
Note: The class_to_idx parameter is here optional and will use the logic of the ``find_classes`` function
by default.
"""
directory = os.path.expanduser(directory)
if class_to_idx is None:
_, class_to_idx = torchvision.datasets.folder.find_classes(directory)
elif not class_to_idx:
raise ValueError("'class_to_index' must have at least one entry to collect any samples.")
both_none = extensions is None and is_valid_file is None
both_something = extensions is not None and is_valid_file is not None
if both_none or both_something:
raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time")
if extensions is not None:
def is_valid_file(x: str) -> bool:
return torchvision.datasets.folder.has_file_allowed_extension(x, extensions) # type: ignore[arg-type]
is_valid_file = cast(Callable[[str], bool], is_valid_file)
instances = []
available_classes = set()
for target_class in sorted(class_to_idx.keys()):
class_index = class_to_idx[target_class]
target_dir = os.path.join(directory, target_class)
if not os.path.isdir(target_dir):
continue
for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):
fnames_base = remove_aer_ana(fnames)
for fname in sorted(fnames_base):
fname_ana = fname+'_ANA.npy'
fname_aer = fname + '_AER.npy'
path_ana = os.path.join(root, fname_ana)
path_aer = os.path.join(root, fname_aer)
if is_valid_file(path_ana) and is_valid_file(path_aer) and os.path.isfile(path_ana) and os.path.isfile(path_aer):
item = path_aer, path_ana, class_index
instances.append(item)
if target_class not in available_classes:
available_classes.add(target_class)
empty_classes = set(class_to_idx.keys()) - available_classes
if empty_classes and not allow_empty:
msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "
if extensions is not None:
msg += f"Supported extensions are: {extensions if isinstance(extensions, str) else ', '.join(extensions)}"
raise FileNotFoundError(msg)
return instances
class ImageFolderDuo(data.Dataset):
def __init__(self, root, transform=None, target_transform=None,
flist_reader=make_dataset_custom, loader=npy_loader, ref_dir = None):
self.root = root
self.imlist = flist_reader(root)
self.transform = transform
self.target_transform = target_transform
self.loader = loader
self.classes = torchvision.datasets.folder.find_classes(root)[0]
self.ref_dir = ref_dir
def __getitem__(self, index):
impathAER, impathANA, target = self.imlist[index]
imgAER = self.loader(impathAER)
imgANA = self.loader(impathANA)
label_ref = np.random.randint(0,len(self.classes)-1)
class_ref = self.classes[label_ref]
path_ref = self.ref_dir + class_ref +'.npy'
if self.transform is not None:
imgAER = self.transform(imgAER)
imgANA = self.transform(imgANA)
if self.target_transform is not None:
target = 0 if self.target_transform(target) == label_ref else 1
img_ref = self.loader(path_ref)
return imgAER, imgANA, img_ref, target
def __len__(self):
return len(self.imlist)
def load_data_duo(base_dir, batch_size, shuffle=True, noise_threshold=0, ref_dir = None):
train_transform = transforms.Compose(
[transforms.Resize((224, 224)),
Threshold_noise(noise_threshold),
Log_normalisation(),
transforms.Normalize(0.5, 0.5)])
print('Default train transform')
val_transform = transforms.Compose(
[transforms.Resize((224, 224)),
Threshold_noise(noise_threshold),
Log_normalisation(),
transforms.Normalize(0.5, 0.5)])
print('Default val transform')
train_dataset = ImageFolderDuo(root=base_dir, transform=train_transform, ref_dir = ref_dir)
val_dataset = ImageFolderDuo(root=base_dir, transform=val_transform, ref_dir = ref_dir)
generator1 = torch.Generator().manual_seed(42)
indices = torch.randperm(len(train_dataset), generator=generator1)
val_size = len(train_dataset) // 5
train_dataset = torch.utils.data.Subset(train_dataset, indices[:-val_size])
val_dataset = torch.utils.data.Subset(val_dataset, indices[-val_size:])
data_loader_train = data.DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=0,
collate_fn=None,
pin_memory=False,
)
data_loader_test = data.DataLoader(
dataset=val_dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=0,
collate_fn=None,
pin_memory=False,
)
return data_loader_train, data_loader_test
def load_data():
raise 'Not implemented'
\ No newline at end of file
#TODO REFAIRE UN DATASET https://discuss.pytorch.org/t/upload-a-customize-data-set-for-multi-regression-task/43413?u=ptrblck
"""1er methode load 1 image pour 1 ref
2eme methode : load 1 image et toutes les refs : ok pour l'instant mais a voir comment est ce que cela scale avec l'augmentation du nb de classes
3eme methods 2 datasets différents : plus efficace en stockage mais pas facil a maintenir"""
\ No newline at end of file
3eme methods 2 datasets différents : plus efficace en stockage mais pas facil a maintenir"""
import matplotlib.pyplot as plt
import numpy as np
from config.config import load_args
from dataset.dataset_ref import load_data, load_data_duo
import torch
import torch.nn as nn
from image_ref.model import Classification_model_contrastive, Classification_model_duo_contrastive
import torch.optim as optim
from sklearn.metrics import confusion_matrix
import seaborn as sn
import pandas as pd
def train(model, data_train, optimizer, loss_function, epoch):
model.train()
losses = 0.
acc = 0.
for param in model.parameters():
param.requires_grad = True
for im, label in data_train:
label = label.long()
if torch.cuda.is_available():
im, label = im.cuda(), label.cuda()
pred_logits = model.forward(im)
pred_class = torch.argmax(pred_logits,dim=1)
acc += (pred_class==label).sum().item()
loss = loss_function(pred_logits,label)
losses += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses = losses/len(data_train.dataset)
acc = acc/len(data_train.dataset)
print('Train epoch {}, loss : {:.3f} acc : {:.3f}'.format(epoch,losses,acc))
return losses, acc
def test(model, data_test, loss_function, epoch):
model.eval()
losses = 0.
acc = 0.
for param in model.parameters():
param.requires_grad = False
for im, label in data_test:
label = label.long()
if torch.cuda.is_available():
im, label = im.cuda(), label.cuda()
pred_logits = model.forward(im)
pred_class = torch.argmax(pred_logits,dim=1)
acc += (pred_class==label).sum().item()
loss = loss_function(pred_logits,label)
losses += loss.item()
losses = losses/len(data_test.dataset)
acc = acc/len(data_test.dataset)
print('Test epoch {}, loss : {:.3f} acc : {:.3f}'.format(epoch,losses,acc))
return losses,acc
def run(args):
#load data
data_train, data_test = load_data(base_dir=args.dataset_dir, batch_size=args.batch_size)
#load model
model = Classification_model_contrastive(model = args.model, n_class=2,
ref_dir = args.dataset_ref_dir)
#load weights
if args.pretrain_path is not None :
load_model(model,args.pretrain_path)
#move parameters to GPU
if torch.cuda.is_available():
model = model.cuda()
#init accumulator
best_acc = 0
train_acc=[]
train_loss=[]
val_acc=[]
val_loss=[]
#init training
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
#traing
for e in range(args.epoches):
loss, acc = train(model,data_train,optimizer,loss_function,e)
train_loss.append(loss)
train_acc.append(acc)
if e%args.eval_inter==0 :
loss, acc = test(model,data_test,loss_function,e)
val_loss.append(loss)
val_acc.append(acc)
if acc > best_acc :
save_model(model,args.save_path)
best_acc = acc
#plot and save training figs
plt.plot(train_acc)
plt.plot(val_acc)
plt.plot(train_acc)
plt.plot(train_acc)
plt.ylim(0, 1.05)
plt.show()
plt.savefig('output/training_plot_noise_{}_lr_{}_model_{}_{}.png'.format(args.noise_threshold,args.lr,args.model,args.model_type))
#load and evaluated best model
load_model(model, args.save_path)
make_prediction(model,data_test, 'output/confusion_matrix_noise_{}_lr_{}_model_{}_{}.png'.format(args.noise_threshold,args.lr,args.model,args.model_type))
def make_prediction(model, data, f_name):
y_pred = []
y_true = []
# iterate over test data
for im, label in data:
label = label.long()
if torch.cuda.is_available():
im = im.cuda()
output = model(im)
output = (torch.max(torch.exp(output), 1)[1]).data.cpu().numpy()
y_pred.extend(output)
label = label.data.cpu().numpy()
y_true.extend(label) # Save Truth
# constant for classes
classes = data.dataset.dataset.classes
# Build confusion matrix
cf_matrix = confusion_matrix(y_true, y_pred)
df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix, axis=1)[:, None], index=[i for i in classes],
columns=[i for i in classes])
plt.figure(figsize=(12, 7))
sn.heatmap(df_cm, annot=cf_matrix)
plt.savefig(f_name)
def train_duo(model, data_train, optimizer, loss_function, epoch):
model.train()
losses = 0.
acc = 0.
for param in model.parameters():
param.requires_grad = True
for imaer,imana, label in data_train:
label = label.long()
if torch.cuda.is_available():
imaer = imaer.cuda()
imana = imana.cuda()
label = label.cuda()
pred_logits = model.forward(imaer,imana)
pred_class = torch.argmax(pred_logits,dim=1)
acc += (pred_class==label).sum().item()
loss = loss_function(pred_logits,label)
losses += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses = losses/len(data_train.dataset)
acc = acc/len(data_train.dataset)
print('Train epoch {}, loss : {:.3f} acc : {:.3f}'.format(epoch,losses,acc))
return losses, acc
def test_duo(model, data_test, loss_function, epoch):
model.eval()
losses = 0.
acc = 0.
for param in model.parameters():
param.requires_grad = False
for imaer,imana, label in data_test:
label = label.long()
if torch.cuda.is_available():
imaer = imaer.cuda()
imana = imana.cuda()
label = label.cuda()
pred_logits = model.forward(imaer,imana)
pred_class = torch.argmax(pred_logits,dim=1)
acc += (pred_class==label).sum().item()
loss = loss_function(pred_logits,label)
losses += loss.item()
losses = losses/len(data_test.dataset)
acc = acc/len(data_test.dataset)
print('Test epoch {}, loss : {:.3f} acc : {:.3f}'.format(epoch,losses,acc))
return losses,acc
def run_duo(args):
#load data
data_train, data_test = load_data_duo(base_dir=args.dataset_dir, batch_size=args.batch_size, )
#load model
model = Classification_model_duo_contrastive(model = args.model, n_class=len(data_train.dataset.dataset.classes))
model.double()
#load weight
if args.pretrain_path is not None :
load_model(model,args.pretrain_path)
#move parameters to GPU
if torch.cuda.is_available():
model = model.cuda()
#init accumulators
best_acc = 0
train_acc=[]
train_loss=[]
val_acc=[]
val_loss=[]
#init training
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
#train model
for e in range(args.epoches):
loss, acc = train_duo(model,data_train,optimizer,loss_function,e)
train_loss.append(loss)
train_acc.append(acc)
if e%args.eval_inter==0 :
loss, acc = test_duo(model,data_test,loss_function,e)
val_loss.append(loss)
val_acc.append(acc)
if acc > best_acc :
save_model(model,args.save_path)
best_acc = acc
# plot and save training figs
plt.plot(train_acc)
plt.plot(val_acc)
plt.plot(train_acc)
plt.plot(train_acc)
plt.ylim(0, 1.05)
plt.show()
plt.savefig('output/training_plot_noise_{}_lr_{}_model_{}_{}.png'.format(args.noise_threshold,args.lr,args.model,args.model_type))
#load and evaluate best model
load_model(model, args.save_path)
make_prediction_duo(model,data_test, 'output/confusion_matrix_noise_{}_lr_{}_model_{}_{}.png'.format(args.noise_threshold,args.lr,args.model,args.model_type))
def make_prediction_duo(model, data, f_name):
y_pred = []
y_true = []
# iterate over test data
for imaer,imana, label in data:
label = label.long()
if torch.cuda.is_available():
imaer = imaer.cuda()
imana = imana.cuda()
label = label.cuda()
output = model(imaer,imana)
output = (torch.max(torch.exp(output), 1)[1]).data.cpu().numpy()
y_pred.extend(output)
label = label.data.cpu().numpy()
y_true.extend(label) # Save Truth
# constant for classes
classes = data.dataset.dataset.classes
# Build confusion matrix
print(len(y_true),len(y_pred))
cf_matrix = confusion_matrix(y_true, y_pred)
df_cm = pd.DataFrame(cf_matrix / np.sum(cf_matrix, axis=1)[:, None], index=[i for i in classes],
columns=[i for i in classes])
print('Saving Confusion Matrix')
plt.figure(figsize=(14, 9))
sn.heatmap(df_cm, annot=cf_matrix)
plt.savefig(f_name)
def save_model(model, path):
print('Model saved')
torch.save(model.state_dict(), path)
def load_model(model, path):
model.load_state_dict(torch.load(path, weights_only=True))
if __name__ == '__main__':
args = load_args()
if args.model_type=='duo':
run_duo(args)
else :
run(args)
\ No newline at end of file
import torch
import torch.nn as nn
import torchvision
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, in_channels=3):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(in_channels, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def forward(self, x):
return self._forward_impl(x)
def _resnet(block, layers, **kwargs):
model = ResNet(block, layers, **kwargs)
return model
def resnet18(num_classes=1000,**kwargs):
r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
"""
return _resnet(BasicBlock, [2, 2, 2, 2],num_classes=num_classes,
**kwargs)
def resnet34(num_classes=1000, **kwargs):
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
"""
return _resnet( BasicBlock, [3, 4, 6, 3],num_classes=num_classes,
**kwargs)
def resnet50(num_classes=1000,**kwargs):
r"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
"""
return _resnet(Bottleneck, [3, 4, 6, 3],num_classes=num_classes,
**kwargs)
def resnet101(num_classes=1000,**kwargs):
r"""ResNet-101 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
"""
return _resnet(Bottleneck, [3, 4, 23, 3],num_classes=num_classes,
**kwargs)
def resnet152(num_classes=1000,**kwargs):
r"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
"""
return _resnet(Bottleneck, [3, 8, 36, 3],num_classes=num_classes,
**kwargs)
class Classification_model_contrastive(nn.Module):
def __init__(self, model, n_class, *args, **kwargs):
super().__init__(*args, **kwargs)
self.n_class = n_class
if model =='ResNet18':
self.im_encoder = resnet18(num_classes=self.n_class, in_channels=2)
def forward(self, input, ref):
input = torch.concat(input,ref,dim=2)
return self.im_encoder(input)
class Classification_model_duo_contrastive(nn.Module):
def __init__(self, model, n_class, *args, **kwargs):
super().__init__(*args, **kwargs)
self.n_class = n_class
if model =='ResNet18':
self.im_encoder = resnet18(num_classes=self.n_class, in_channels=2)
self.predictor = nn.Linear(in_features=self.n_class*2,out_features=self.n_class)
def forward(self, input_aer, input_ana, input_ref):
input_ana = torch.concat(input_ana, input_ref, dim=2)
input_aer = torch.concat(input_aer, input_ref, dim=2)
out_aer = self.im_encoder(input_aer)
out_ana = self.im_encoder(input_ana)
out = torch.concat([out_aer,out_ana],dim=1)
return self.predictor(out)
\ No newline at end of file
......@@ -241,4 +241,5 @@ if __name__ == '__main__':
ms1_start_mz=350, bin_mz=1, max_cycle=663, min_rt=min_rt, max_rt=max_rt)
plt.clf()
mpimg.imsave(spe+'.png', im)
np.save(spe+'.npy', im)
......@@ -272,18 +272,7 @@ class Classification_model(nn.Module):
def forward(self, input):
return self.im_encoder(input)
class Classification_model_contrastive(nn.Module):
def __init__(self, model, n_class, *args, **kwargs):
super().__init__(*args, **kwargs)
self.n_class = n_class
if model =='ResNet18':
self.im_encoder = resnet18(num_classes=self.n_class, in_channels=2)
def forward(self, input, ref):
input = torch.concat(input,ref,dim=2)
return self.im_encoder(input)
class Classification_model_duo(nn.Module):
......@@ -296,7 +285,7 @@ class Classification_model_duo(nn.Module):
self.predictor = nn.Linear(in_features=self.n_class*2,out_features=self.n_class)
def forward(self, input_aer, input_ana, input_ref):
def forward(self, input_aer, input_ana):
out_aer = self.im_encoder(input_aer)
out_ana = self.im_encoder(input_ana)
out = torch.concat([out_aer,out_ana],dim=1)
......
......@@ -6,4 +6,7 @@ openpyxl
torch~=2.6.0
torchvision~=0.21.0
pillow~=11.1.0
seaborn~=0.13.2
\ No newline at end of file
seaborn~=0.13.2
scikit-learn~=1.6.1
fastapy~=1.0.5
pyarrow~=19.0.1
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment