Skip to content
Snippets Groups Projects
Commit cf931863 authored by Maxime MORGE's avatar Maxime MORGE
Browse files

LLM4AAMAS: initial version

parent ae1c0e7a
No related branches found
No related tags found
No related merge requests found
# LLM4AAMAS
Les Systèmes Multi-agents et Agents Autonomes (SMAA) génératifs ouvrent des
perspectives prometteuses pour résoudre des problèmes dans des environnements
ouverts et simuler des dynamiques sociales complexes.
Generative Autonomous Agents and Multi-Agent Systems (AAMAS) offer promising
opportunities for solving problems in open environments and simulating complex
social dynamics.
This repository contains a collection of papers and ressources related
to generative AAMAS. This list is a work in progress and will be regularly updated with new resources.
L'objectif de ce dépôt est de constituer une collection de ressources
pertinentes pour les SMAA génératifs que nous nous efforçons de mettre à jour
régulièrement et en continu.
## Auteurs
## Artificial Intelligence
- **[Intelligence artificielle : une approche moderne (4e édition)](https://hal.archives-ouvertes.fr/hal-04245057)**
*Stuart Russell, Peter Norvig, Fabrice Popineau, Laurent Miclet, Claire Cadet (2021)*
Publisher: Pearson France
- **[Apprentissage artificiel - 3e édition : Deep learning, concepts et algorithmes](https://www.eyrolles.com/)**
*Antoine Cornuéjols, Laurent Miclet, Vincent Barra (2018)*
Publisher: Eyrolles
## Neural networks (RNN, Transformers)
- **[Learning representations by back-propagating errors](https://doi.org/10.1038/323533a0)**
*David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams (1986)*
Published in *Nature*
- **[ImageNet Classification with Deep Convolutional Neural Networks](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks)**
*Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton (2012)*
Presented at *NeurIPS*
## Large Language Models
- **[A Survey of Large Language Models](https://arxiv.org/abs/2303.18223)**
*Wayne Xin Zhao, Kun Zhou, Junyi Li, et al. (2024)*
Published on *arXiv*
- **[Large Language Model based Multi-Agents: A Survey of Progress and
Challenges](https://arxiv.org/abs/2402.01680)** *Taicheng Guo et al. (2024)*
Published on *arXiv* arXiv:2402.01680 [cs.CL]
- **[Improving language understanding by generative
pre-training](https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf)**
*Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever (2018)*
Published by OpenAI
- **[BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding](https://www.aclweb.org/anthology/N19-1423/)** *Jacob Devlin,
Ming-Wei Chang, Kenton Lee, Kristina Toutanova (2019)* Presented at
*NAACL-HLT*
- **[Sequence to Sequence Learning with Neural
Networks](https://arxiv.org/abs/1409.3215)** *Ilya Sutskever, Oriol Vinyals,
Quoc V. Le (2014)* Published on *arXiv*
- **[Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation](https://arxiv.org/abs/1406.1078)** *Kyunghyun Cho, Bart
van Merrienboer, Caglar Gulcehre, et al. (2014)* Published on *arXiv*
## Tuning
### Instruction tuning
- **[LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)**
*Edward J. Hu, Yelong Shen, Phillip Wallis, et al. (2021)*
Published on *arXiv*
- **[Language Models are Few-Shot
Learners](https://papers.nips.cc/paper/2020/file/fc2c7f9a3f3f86cde5d8ad2c7f7e57b2-Paper.pdf)**
*Tom Brown, Benjamin Mann, Nick Ryder, et al. (2020)* Presented at *NeurIPS*
### Alignement tuning
- **[Training language models to follow instructions with human
feedback](https://papers.nips.cc/paper/2022/hash/17f4c5f98073d1fb95f7e53f5c7fdb64-Abstract.html)**
*Long Ouyang, Jeffrey Wu, Xu Jiang, et al. (2022)* Presented at *NeurIPS*
## Existing LLMs
Many models are available at the following URLs:
[https://www.nomic.ai/gpt4all](https://www.nomic.ai/gpt4all) and
[https://huggingface.co/models](https://huggingface.co/models).
- **[GPT-4 Technical Report](https://arxiv.org/abs/2303.08774)**
*OpenAI Team (2024)*
Published on *arXiv*
- **[The Llama 3 Herd of Models](https://arxiv.org/abs/2407.21783)**
*Meta Team (2024)*
Published on *arXiv*
- **[Stanford Alpaca: An Instruction-Following LLaMa Model](https://github.com/tatsu-lab/stanford_alpaca)**
*Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, et al. (2023)*
Published on *GitHub*
- **[Mixtral of Experts](https://arxiv.org/abs/2401.04088)**
*Mistral AI team (2024)*
Published on *arXiv*
- **[Mistral 7B](https://arxiv.org/abs/2310.06825)**
*Mistral AI team (2023)*
Published on *arXiv*
- **[The Lucie-7B LLM and the Lucie Training Dataset: Open Resources for
Multilingual Language Generation](https://arxiv.org/abs/)** *Olivier Gouvert,
Julie Hunter, Jérôme Louradour, Evan Dufraisse, Yaya Sy, Pierre-Carl Langlais,
Anastasia Stasenko, Laura Rivière, Christophe Cerisara, Jean-Pierre Lorré
(2025)*
## Prompt engineering
### ICL
- **A Survey on In-context Learning** *Qingxiu Dong, Lei Li, Damai Dai, Ce
Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Baobao Chang,
Xu Sun, Lei Li, Zhifang Sui (2024)* Presented at the *Conference on Empirical
Methods in Natural Language Processing (EMNLP)* Location: Miami, Florida, USA
Published by: Association for Computational Linguistics
### CoT
- **[Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models](https://papers.nips.cc/paper/52604-chain-of-thought-prompting-elicits-reasoning-in-large-language-models)**
*Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, et al. (2022)*
Presented at *NeurIPS*
### RAG
- **[Retrieval-Augmented Generation for Large Language Models: A
Survey](https://arxiv.org/abs/2312.10997)** *Yunfan Gao, Yun Xiong, Xinyu Gao,
Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, Haofen Wang
(2024)* Published on *arXiv*
## Generative Autonomous Agents
- **A Survey on Large Language Model Based Autonomous Agents** Lei Wang, Chen
Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, Jirong Wen (2024)*
Published in *Frontiers of Computer Science* (Volume 18, Issue 6, Pages
186345) Publisher: Springer
- **[HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face](https://papers.nips.cc/paper/2023/hash/38154-hugginggpt-solving-ai-tasks-with-chatgpt-and-its-friends-in-hugging-face.pdf)**
*Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, Yueting Zhuang
(2023)* Presented at *Advances in Neural Information Processing Systems
(NeurIPS)* Pages: 38154–38180 Publisher: Curran Associates, Inc. Volume: 36
- **[Toolformer: Language Models Can Teach Themselves to Use Tools](https://papers.nips.cc/paper/86759-toolformer-language-models-can-teach-themselves-to-use-tools)**
*Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, et al. (2023)*
Presented at *NeurIPS*
- **[Cognitive Architectures for Language Agents](https://arxiv.org/abs/2309.02427)**
*Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, Thomas L. Griffiths (2024)*
Published on *arXiv*
### Generative Autonomous Agents on the shelf
- [LangChain](https://www.langchain.com) is an open-source framework for
designing prompts for LLMs. It can be used to define high-level reasoning
sequences, conversational agents, RAGs (Retrieval-Augmented Generation),
document summaries, or even the generation of synthetic data.
- [LangGraph](https://langchain-ai.github.io/langgraph) is a low-level library
for the design of cognitive architecture for autonomous agents, whose
reasoning engine is an LLM.
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT) is a platform for
the creation, deployment, and management of generative agents.
- [WorkGPT](https://github.com/team-openpm/workgpt) is similar to AutoGPT
## Generative MAS
- **[Large language models empowered agent-based modeling and simulation: A
survey and perspectives](https://doi.org/10.1057/s41599-024-01235-9)** **Chen
Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu,
Yong Li (2024)* Published in *Humanities and Social Sciences Communications*,
Volume 11, Issue 1, Pages 1–24
- **[Social Simulacra: Creating Populated Prototypes for Social Computing
Systems](https://dl.acm.org/doi/10.1145/3526110.3545617)** *Joon Sung Park,
Lindsay Popowski, Carrie Cai, Meredith Ringel Morris, Percy Liang, Michael S.
Bernstein (2022)* Published in *Proceedings of the 35th Annual ACM Symposium
on User Interface Software and Technology* Articleno: 74, Pages: 18, Location:
Bend, OR, USA
- **[Generative Agents: Interactive Simulacra of Human
Behavior](https://dl.acm.org/doi/10.1145/3586184.3594067)** *Joon Sung Park,
Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, Michael
S. Bernstein (2023)* Published in *Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology* Articleno: 2, Pages: 22,
Location: San Francisco, CA, USA, Series: UIST '23
- **[Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors](https://openreview.net/forum?id=HywBMyh6JGR)** *Weize Chen, Yusheng
Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, et al. (2023)* Published in *The Twelfth
International Conference on Learning Representations (ICLR 2023)*
- **[Training socially aligned language models on simulated social
interactions](https://arxiv.org/abs/2305.16960)** *Ruibo Liu, Ruixin Yang,
Chenyan Jia, Ge Zhang, Denny Zhou, Andrew M. Dai, Diyi Yang, Soroush Vosoughi
(2023)* Published on *arXiv* arXiv:2305.16960
- [S3: Social-network Simulation System with Large Language Model-Empowered
Agents](https://arxiv.org/abs/2307.14984)** *Chen Gao, Xiaochong Lan, Zhihong
Lu, Jinzhu Mao, Jinghua Piao, Huandong Wang, Depeng Jin, Yong Li (2023)*
Published on *arXiv* arXiv:2307.14984
### Generative MAS on the shelf
- [MetaGPT](https://github.com/geekan/MetaGPT) is a framework for creating
generative MAS dedicated to software development.
- [CAMEL](https://github.com/camel-ai/camel) proposes a generative multi-agent
framework for accomplishing complex tasks.
- [AutoGen](https://github.com/microsoft/autogen) is a versatile open-source
framework for creating generative multi-agent systems.
## Authors
Maxime MORGE
## License
TBA
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment