Skip to content
Snippets Groups Projects
Commit 075ab33e authored by MathisBD's avatar MathisBD
Browse files

proof of weber_majority_weak

parent d0e91e46
No related branches found
No related tags found
No related merge requests found
...@@ -1628,19 +1628,30 @@ Qed. ...@@ -1628,19 +1628,30 @@ Qed.
End WeberFirstOrder. End WeberFirstOrder.
Lemma list_sum_alls x n : (* This is an application of weber_first_order. *)
list_sum (alls x n) == ((INR n) * x)%R.
Proof. Admitted.
Lemma weber_majority_weak ps w : Lemma weber_majority_weak ps w :
countA_occ equiv R2_EqDec w ps >= (Nat.div2 (length ps + 1)) -> Weber ps w. countA_occ equiv R2_EqDec w ps >= (Nat.div2 (length ps + 1)) -> Weber ps w.
Proof. Proof.
intros Hcount. rewrite ge_le_iff in Hcount. rewrite weber_first_order. intros Hcount. rewrite ge_le_iff in Hcount. rewrite weber_first_order.
(* rewrite weber_first_order. rewrite list_sumVS_norm. *) assert (Hineq : (norm (list_sumVS (map (u w) ps)) + INR (countA_occ equiv R2_EqDec w ps) <= INR (length ps))%R).
(* rewrite (@list_sum_le _ (alls 1%R (Nat.div2 (length ps + 1)))). *) {
(* + rewrite list_sum_alls, Rmult_1_r. apply le_INR. assumption. *) clear Hcount.
(* + etransitivity ; [|exact Hcount]. *) induction ps as [| p ps IH].
Admitted. + simpl. rewrite Rmult_0_l, Rplus_0_l, sqrt_0. lra.
+ cbn [countA_occ length map list_sumVS]. case (R2_EqDec p w) as [Hpw | Hpw].
- unfold u at 1. rewrite Hpw, add_opp, unitary_origin, add_origin_l.
rewrite S_INR, S_INR. lra.
- transitivity (1%R + norm (list_sumVS (map (u w) ps)) + INR (countA_occ equiv R2_EqDec w ps))%R.
* apply Rplus_le_compat_r. rewrite triang_ineq. apply Rplus_le_compat_r.
unfold u. rewrite norm_unitary ; [lra |].
intros H. rewrite R2sub_origin in H. intuition.
* rewrite S_INR. lra.
}
transitivity (INR (Nat.div2 (length ps + 1))) ; [| now apply le_INR].
eapply Rplus_le_reg_r ; rewrite Hineq. Search INR Rle le.
rewrite <-(Rplus_le_compat_l (INR (Nat.div2 (length ps + 1))) _ _ (le_INR _ _ Hcount)).
rewrite <-plus_INR. apply le_INR. apply div2_sum_p1_ge.
Qed.
Lemma weber_majority ps w : Lemma weber_majority ps w :
countA_occ equiv R2_EqDec w ps > (Nat.div2 (length ps + 1)) -> OnlyWeber ps w. countA_occ equiv R2_EqDec w ps > (Nat.div2 (length ps + 1)) -> OnlyWeber ps w.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment