Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
coq-pactole
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
pactole
coq-pactole
Commits
3e88b516
Commit
3e88b516
authored
9 months ago
by
Pierre Courtieu
Browse files
Options
Downloads
Patches
Plain Diff
Removing the type class for number of robots.
This is to be discussed. Let us leave it as before for now.
parent
41dc107c
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Core/Identifiers.v
+26
-20
26 additions, 20 deletions
Core/Identifiers.v
with
26 additions
and
20 deletions
Core/Identifiers.v
+
26
−
20
View file @
3e88b516
...
@@ -125,12 +125,10 @@ Qed.
...
@@ -125,12 +125,10 @@ Qed.
Section
Robots
.
Section
Robots
.
Context
(
n
m
:
nat
)
{
ln
lm
:
nat
}
{
ltc_l_n
:
ln
<
c
n
}
{
ltc_l_m
:
lm
<
c
m
}
.
(
**
Given
a
number
of
correct
and
Byzantine
robots
,
we
can
build
canonical
names
.
(
**
Given
a
number
of
correct
and
Byzantine
robots
,
we
can
build
canonical
names
.
It
is
not
declared
as
a
global
instance
to
avoid
creating
spurious
settings
.
*
)
It
is
not
declared
as
a
global
instance
to
avoid
creating
spurious
settings
.
*
)
Definition
Robots
:
Names
.
Definition
Robots
(
n
m
:
nat
)
:
Names
.
Proof
using
n
m
.
Proof
using
.
refine
{|
refine
{|
nG
:=
n
;
nG
:=
n
;
nB
:=
m
;
nB
:=
m
;
...
@@ -149,37 +147,45 @@ Proof using n m.
...
@@ -149,37 +147,45 @@ Proof using n m.
+
intros
?
?
.
apply
enum_eq
.
+
intros
?
?
.
apply
enum_eq
.
+
intros
?
?
.
apply
enum_eq
.
+
intros
?
?
.
apply
enum_eq
.
Defined
.
Defined
.
Global
Opaque
G
B
.
Global
Opaque
G
B
.
(
*
TODO
:
discuss
this
Section
NM
.
Notation
G
:=
(
@
G
Robots
).
Variables
n
m
:
nat
.
Notation
B
:=
(
@
B
Robots
).
Lemma
G_Robots
:
G
=
fin
n
.
Notation
GRob
:=
(
@
G
(
Robots
n
m
)).
Notation
BRob
:=
(
@
B
(
Robots
n
m
)).
Lemma
GRob_Robots
:
GRob
=
fin
n
.
Proof
using
.
reflexivity
.
Qed
.
Proof
using
.
reflexivity
.
Qed
.
Lemma
B_Robots
:
B
=
fin
m
.
Lemma
B
Rob
_Robots
:
B
Rob
=
fin
m
.
Proof
using
.
reflexivity
.
Qed
.
Proof
using
.
reflexivity
.
Qed
.
Lemma
G_Robots_eq_iff
:
∀
g1
g2
:
G
,
g1
=
g2
:>
G
<->
g1
=
g2
:>
fin
n
.
Lemma
G
Rob
_Robots_eq_iff
:
forall
g1
g2
:
G
Rob
,
g1
=
g2
:>
G
Rob
<->
g1
=
g2
:>
fin
n
.
Proof
using
.
reflexivity
.
Qed
.
Proof
using
.
reflexivity
.
Qed
.
Lemma
B_Robots_eq_iff
:
∀
b1
b2
:
B
,
b1
=
b2
:>
B
<->
b1
=
b2
:>
fin
m
.
Lemma
B
Rob
_Robots_eq_iff
:
forall
b1
b2
:
B
Rob
,
b1
=
b2
:>
B
Rob
<->
b1
=
b2
:>
fin
m
.
Proof
using
.
reflexivity
.
Qed
.
Proof
using
.
reflexivity
.
Qed
.
Definition
good0
:
G
:=
fin0
.
Definition
good0
:
GRob
:=
fin0
.
Definition
byz0
:
BRob
:=
fin0
.
Definition
byz0
:
B
:=
fin0
.
Lemma
all_good0
:
forall
g
:
GRob
,
n
=
1
->
g
=
good0
.
Proof
using
.
intros
*
H
.
rewrite
GRob_Robots_eq_iff
.
apply
all_fin0
,
H
.
Qed
.
Lemma
all_good
0
:
∀
g
:
G
,
n
=
1
->
g
=
g
ood0
.
Lemma
all_good
_eq
:
forall
g1
g2
:
G
Rob
,
n
=
1
->
g
1
=
g
2
.
Proof
using
.
intros
*
H
.
rewrite
G_Robots_eq_iff
.
apply
all_
fin0
,
H
.
Qed
.
Proof
using
ltc_l_n
.
intros
*
H
.
rewrite
G
Rob
_Robots_eq_iff
.
apply
all_
eq
,
H
.
Qed
.
Lemma
all_
good_eq
:
∀
g1
g2
:
G
,
n
=
1
->
g1
=
g2
.
Lemma
all_
byz0
:
forall
b
:
BRob
,
m
=
1
->
b
=
byz0
.
Proof
using
ltc_l_n
.
intros
*
H
.
rewrite
G
_Robots_eq_iff
.
apply
all_
eq
,
H
.
Qed
.
Proof
using
.
intros
*
H
.
rewrite
BRob
_Robots_eq_iff
.
apply
all_
fin0
,
H
.
Qed
.
Lemma
all_byz0
:
∀
b
:
B
,
m
=
1
->
b
=
byz0
.
Lemma
all_byz_eq
:
forall
b1
b2
:
BRob
,
m
=
1
->
b1
=
b2
.
Proof
using
.
intros
*
H
.
rewrite
B_Robots_eq_iff
.
apply
all_fin0
,
H
.
Qed
.
Proof
using
ltc_l_m
.
intros
*
H
.
rewrite
BRob_Robots_eq_iff
.
apply
all_eq
,
H
.
Qed
.
End
NM
.
Lemma
all_byz_eq
:
∀
b1
b2
:
B
,
m
=
1
->
b1
=
b2
.
*
)
Proof
using
ltc_l_m
.
intros
*
H
.
rewrite
B_Robots_eq_iff
.
apply
all_eq
,
H
.
Qed
.
End
Robots
.
End
Robots
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment