Skip to content
Snippets Groups Projects
Commit 8558f314 authored by Sébastien Bouchard's avatar Sébastien Bouchard
Browse files

Removal of useless lemma introduced in previous commit

parent 64a03e16
No related branches found
No related tags found
No related merge requests found
......@@ -52,13 +52,6 @@ intros x l Hin. induction l.
- destruct Hin. subst. now left. right. auto.
Qed. *)
Lemma hd_proof : forall l : list A, 0 < length l -> A.
Proof using .
intros * H. destruct l as [|a t]. 2: exact a. exfalso.
rewrite (proj2 (length_zero_iff_nil _)) in H by reflexivity.
inversion H.
Qed.
Lemma all_eq : forall (l : list A) (a1 : A), In a1 l ->length l = 1
-> forall a2 : A, In a2 l -> a2 = a1.
Proof using .
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment