Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
coq-pactole
Manage
Activity
Members
Labels
Plan
Issues
0
Issue boards
Milestones
Wiki
Code
Merge requests
0
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
pactole
coq-pactole
Commits
cf5ba5b9
Commit
cf5ba5b9
authored
8 months ago
by
Pierre Courtieu
Browse files
Options
Downloads
Patches
Plain Diff
Last admits for Weber point.
parent
09a1ab7d
No related branches found
No related tags found
No related merge requests found
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
CaseStudies/Gathering/InR2/Weber/Line.v
+68
-43
68 additions, 43 deletions
CaseStudies/Gathering/InR2/Weber/Line.v
CaseStudies/Gathering/InR2/Weber/Weber_point.v
+881
-204
881 additions, 204 deletions
CaseStudies/Gathering/InR2/Weber/Weber_point.v
with
949 additions
and
247 deletions
CaseStudies/Gathering/InR2/Weber/Line.v
+
68
−
43
View file @
cf5ba5b9
...
@@ -1046,21 +1046,6 @@ Lemma line_right_spec L x y ps :
...
@@ -1046,21 +1046,6 @@ Lemma line_right_spec L x y ps :
InA
equiv
y
(
L
^
right
x
ps
)
<->
(
InA
equiv
y
ps
/
\
(
L
^
P
y
>
L
^
P
x
)
%
R
).
InA
equiv
y
(
L
^
right
x
ps
)
<->
(
InA
equiv
y
ps
/
\
(
L
^
P
y
>
L
^
P
x
)
%
R
).
Proof
.
unfold
line_right
.
now
rewrite
filter_InA
,
Rltb_true
;
[
|
intros
?
?
->
].
Qed
.
Proof
.
unfold
line_right
.
now
rewrite
filter_InA
,
Rltb_true
;
[
|
intros
?
?
->
].
Qed
.
Lemma
line_left_diff
L
a
ps
:
((
L
^
left
)
a
ps
)
<>
nil
->
aligned_on
L
ps
->
(
L
^-
P
)
((
L
^
max
)
((
L
^
left
)
a
ps
))
<>
a
.
Proof
.
intros
h_left
h_align
.
intro
abs
.
assert
(
aligned_on
L
((
L
^
left
)
a
ps
))
as
h_align
'
.
{
eapply
aligned_on_inclA
with
ps
;
auto
.
apply
line_left_inclA
.
}
specialize
(
line_iP_max_InA
L
_
h_left
h_align
'
)
as
h
.
rewrite
abs
in
h
.
rewrite
line_left_spec
in
h
.
lra
.
Qed
.
Lemma
line_left_on_right_partition
L
x
ps
:
Lemma
line_left_on_right_partition
L
x
ps
:
PermutationA
equiv
ps
(
L
^
left
x
ps
++
L
^
on
x
ps
++
L
^
right
x
ps
).
PermutationA
equiv
ps
(
L
^
left
x
ps
++
L
^
on
x
ps
++
L
^
right
x
ps
).
...
@@ -1155,6 +1140,52 @@ Proof.
...
@@ -1155,6 +1140,52 @@ Proof.
lra
.
lra
.
Qed
.
Qed
.
Lemma
line_left_diff
L
a
ps
:
((
L
^
left
)
a
ps
)
<>
nil
->
aligned_on
L
ps
->
(
L
^-
P
)
((
L
^
max
)
((
L
^
left
)
a
ps
))
=/=
a
.
Proof
.
intros
h_left
h_align
.
intro
abs
.
assert
(
aligned_on
L
((
L
^
left
)
a
ps
))
as
h_align
'
.
{
eapply
aligned_on_inclA
with
ps
;
auto
.
apply
line_left_inclA
.
}
specialize
(
line_iP_max_InA
L
_
h_left
h_align
'
)
as
h
.
rewrite
abs
in
h
.
rewrite
line_left_spec
in
h
.
lra
.
Qed
.
Lemma
eqlistA_nil_eq
:
forall
[
A
:
Type
]
(
eqA
:
A
->
A
->
Prop
)
l
,
eqlistA
eqA
l
nil
<->
l
=
nil
.
Proof
.
intros
A
eqA
l
.
split
.
-
induction
l
;
intros
;
auto
.
inversion
H0
.
-
intro
h
.
subst
.
apply
eqlistA_nil
.
Qed
.
Lemma
line_right_diff
L
a
ps
:
((
L
^
right
)
a
ps
)
<>
nil
->
aligned_on
L
ps
->
(
L
^-
P
)
((
L
^
min
)
((
L
^
right
)
a
ps
))
=/=
a
.
Proof
.
intros
h_right
h_align
.
rewrite
<-
line_reverse_iP_max
.
rewrite
<-
line_reverse_left
.
apply
line_left_diff
;
auto
.
-
intro
abs
.
rewrite
<-
eqlistA_nil_eq
with
(
eqA
:=
equiv
)
in
abs
.
rewrite
line_reverse_left
in
abs
.
rewrite
eqlistA_nil_eq
in
abs
.
contradiction
.
-
now
apply
->
aligned_on_reverse
.
Qed
.
Lemma
bipartition_min
:
forall
L
ps
,
Lemma
bipartition_min
:
forall
L
ps
,
PermutationA
equiv
ps
PermutationA
equiv
ps
...
@@ -1286,36 +1317,30 @@ Proof.
...
@@ -1286,36 +1317,30 @@ Proof.
apply
PermutationA_app_inv_l
with
(
2
:=
h2
).
apply
PermutationA_app_inv_l
with
(
2
:=
h2
).
typeclasses
eauto
.
typeclasses
eauto
.
Qed
.
Qed
.
(
*
Lemma
aggravate_left
'
:
forall
L
ps
w
w
'
,
((
L
^
P
w
'
)
<
(
L
^
P
w
))
%
R
Lemma
aggravate_left
'
:
forall
L
ps
w
w
'
,
->
L
^
right
w
'
(
L
^
left
w
ps
)
=
nil
((
L
^
P
)
w
<
(
L
^
P
)
w
'
)
%
R
->
->
L
^
on
w
'
ps
=
nil
(
L
^
left
)
w
'
((
L
^
right
)
w
ps
)
=
nil
->
->
PermutationA
equiv
(
L
^
left
w
ps
)
(
L
^
left
w
'
ps
).
(
L
^
on
)
w
ps
=
nil
->
PermutationA
equiv
((
L
^
left
)
w
'
ps
)
((
L
^
left
)
w
ps
).
Proof
.
Proof
.
intros
L
ps
w
w
'
H0
H1
H2
.
intros
L
ps
w
w
'
H0
H1
H2
.
specialize
(
line_left_on_right_partition
L
w
'
ps
)
as
h1
.
remember
(
line_reverse
L
)
as
L
'
.
specialize
(
line_left_on_right_partition
L
w
ps
)
as
h2
.
rewrite
H2
in
h1
.
repeat
rewrite
<-
line_reverse_right
.
rewrite
app_nil_l
in
h1
.
apply
aggravate_right
'
.
assert
(
PermutationA
equiv
((
L
^
right
)
w
ps
++
(
L
^
on
)
w
ps
)
((
L
^
right
)
w
'
ps
)).
-
repeat
rewrite
line_reverse_proj
.
{
specialize
(
line_left_on_right_partition
L
w
((
L
^
right
)
w
'
ps
))
as
h3
.
lra
.
rewrite
H2
in
h3
.
-
apply
PermutationA_nil
with
equiv
;
auto
.
rewrite
app_nil_r
in
h3
.
+
typeclasses
eauto
.
rewrite
<-
aggravate_left
in
h3
;
auto
.
+
setoid_rewrite
line_reverse_left
.
rewrite
<-
aggravate_on_left
in
h3
;
auto
.
setoid_rewrite
line_reverse_right
.
rewrite
h3
.
now
rewrite
H1
.
reflexivity
.
-
apply
eqlistA_nil_eq
with
equiv
.
}
rewrite
<-
H2
.
rewrite
<-
H3
in
h2
.
apply
line_reverse_on
.
rewrite
app_assoc
in
h1
.
rewrite
h1
in
h2
at
1.
symmetry
.
apply
PermutationA_app_inv_l
with
(
2
:=
h2
).
typeclasses
eauto
.
Qed
.
Qed
.
*
)
Lemma
line_on_length_aligned
L
x
ps
:
Lemma
line_on_length_aligned
L
x
ps
:
aligned_on
L
(
x
::
ps
)
->
aligned_on
L
(
x
::
ps
)
->
...
...
This diff is collapsed.
Click to expand it.
CaseStudies/Gathering/InR2/Weber/Weber_point.v
+
881
−
204
View file @
cf5ba5b9
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment